Биэтанол в бензине или что такое спиртовой бензин

Вс, 12/14/2014 - 18:36

Завод по производству биоэтанола в Германии.
Мощность: 240 млн литров. Сырье: рожь, пшеница, ячмень

Биотопливная заправка в США. Цифры возле марки биотоплива (напр. В20) показывают процентное содержание этанола в обычном топливе. Проверки показали, что часто эти проценты не соответствуют нормам, что наносит вред двигателю

Все хорошие вещи в жизни приходят
не поодиночке, а вместе с другими вещами
Чарльз Лэмб

Вопрос смесевых технологий при производстве бензинов давно уже интересует технологов, экологов, энергетиков, автомобилистов и просто любителей всяческих новшеств и современных технологий. Несмотря на множество позитивных моментов, так же как и на наличие определенных недостатков, однозначности в выводах пока еще не присутствует, что оставляет обширные пространства для размышлений и убеждений, похвалы и критики.

Несмотря на это, в ООН считают, что развитие рынка экологически чистого топлива (в том числе и смесевого) является одной из первоочередных задач мирового сообщества. Многие мировые державы взяли курс на активное внедрение биотоплив в автомобилестроение. Так, соответственно стратегии развития Европейского Союза, к 2010 г. в Европе 5,75% потребности в топливе для двигателей внутреннего сгорания будут покрываться продукцией на биогенной основе; к 2017 году поставки биотоплив в США должны составить 100 млн. т; а в Бразилии долю биотоплив в суммарном потреблении топлив планируется поднять до 5% в 2013 г.

Но все это лишь голые цифры, оставляющие в тени понимание и анализ. Для объективного восприятия определенного процесса или явления стоит вначале разобраться с самой проблематикой, подковаться теоретически, понять причины, вызвавшие его появление, историю развития, превосходства и недостатки, реалии и перспективы. Таким образом, целью написания этой обзорной статьи была систематизация и структуризация накопленных знаний относительно темы смесевых биоэтаноловых бензинов. Выводы делайте сами, опираясь на прочтенные аргументы и свои внутренние убеждения.

Для начала более детально ознакомимся с основными действующими лицами:

Бензин (франц. benzine, от лат. benzoe — ароматический сок) — смесь углеводородов различного строения, которая получается в процессе переработки нефти и используется в качестве растворителя или горючего с низкими детонационными характеристиками.

Бензиновая фракция является самой легкой из жидких фракций нефти. Ее получают в ходе разных процессов возгонки нефти. Поэтому от фракционного состава бензинов зависят легкость и надежность пуска двигателя, полнота сгорания, длительность прогрева, приемистость автомобиля и интенсивность износа деталей двигателя. К основным качественным показателям моторных бензинов можно отнести: испаряемость и смесеобразование; коррозионную активность; склонность к неуправляемому воспламенению (калильное зажигание); детонационная стойкость (октановое число); нейтральность по отношению к окружающей среде; нагарообразование и склонность к отложениям; химическую стабильность (индукционный период); токсичность и др. Улучшить некоторые из них (особенно октановое число и безопасность для человека и природы) стараются с помощью различных добавок, в том числе и биоэтанола.

Биоэтанол (от греч. βίος — жизнь и этанол) — по сути, обычный этиловый спирт, а приставка био- как бы подчеркивает его происхождение из растительной сырьевой базы и щадящее отношение к природе и человеку.

Смесевые бензины (моторные) — это бензины, для повышения октанового числа и экологической безопасности которых были использованы добавки биоэтанола.

Термин, примененный сотрудниками Украинского научно-исследовательского института нефтеперерабатывающей промышленности «МАСМА» при разработке ДСТУ 320.001.49943.015-2000 для марок А-80-Ек, А-92-Ек, А-95-Ек, А-98-Ек с добавками биоэтанола.

Сразу хочется отметить то, что любой бензин является в той или иной мере смесевым, ведь в его производстве так или иначе используются присадки (вещества, добавляемые в количествах 0,05-0,1% к топливам, минеральным и синтетическим маслам для улучшения их эксплуатационных свойств): различные антидетонаторы, антиокислители, ингибиторы коррозии и др. Так что, если Вы встретите человека, который будет с неистовством критиковать идею смесевого бензина в любом ее проявлении, можете смело усомниться в компетентности этих высказываний!

Детонацией называют такой характер горения, при котором воспламенение горючей смеси происходит в нескольких точках цилиндра или по всему объему сразу

Первый двигатель, работающий на этаноле и скипидаре, был изобретен и запатентован еще в далеком 1826 году Самуэлем Мори (1762-1843). С тех пор этанол начал постепенно завоевывать мировой рынок топлива. Хотя длительное время потребление классического нефтяного топлива в автотранспортных средствах занимало лидирующую позицию в связи с тем, что крупные нефтяные и автомобильные компании создали барьер на пути проникновения новой конкурентоспособной промышленности. Такое положение дел продолжалось до нефтяного кризиса начала 1970-х годов, который поспособствовал использованию этилового спирта в качестве добавки к бензину.

Одним из важных свойств бензина есть его октановое число (детонационная стойкость). Чем оно выше, тем лучше. Так, октановое число бензина после первичной перегонки нефти обычно не превышает 70. Именно повышением этого числа и заняты специалисты в области смесевых топливных технологий.

Кроме того, ужасающими темпами прогрессирует негативное влияние бензиновых выхлопов на экологию и здоровье человека, что также пытаются исправить с помощью внедрения биоэтанола. Так, на сегодняшний день автомобильный транспорт выделяет в воздух около 30% всех загрязнений, а в городах эта цифра доходит до 80%. Применение этанола в смеси с бензином помогает снизить выделение угарного газа, который в 20% случаев вызывает образование смога. Хотя в процессе эксплуатации подобных двигателей и происходит выделение CO2 в атмосферу, он в достаточной мере поглощается в процессе роста биомассы, что фактически дополняет углеродный цикл круговорота веществ в природе. Добавка 10% биотоплив к традиционным моторным топливам уменьшает содержание вредных веществ в выхлопах автомобилей на 30%.

Но тернистый путь модернизации бензина был не без проб и ошибок. «Первым скомканным блином» в поиске эффективных добавок к бензину стало применение соединений свинца: тетраэтилсвинца (ТЭС) или тетраметилсвинца (ТМС). Эти соединения увеличивают октановое число бензина, не влияя при этом на другие его свойства, в том числе на давление насыщенного пара. Но ТЭС оказался очень ядовитым химическим соединением, поскольку даже небольшие концентрации его паров могут привести к патологии и летальному исходу. Вследствие такой опасности уже в 60-х годах руководство США и Агентство по защите окружающей среды объявили о постепенном снижении содержания свинца в бензине. С 2000 года в странах — членах Европейского Союза бензины, содержащие свинец, не используются вообще.

Следующим этапом стало применение оксигенатов — полностью сгораемых кислородосодержащих добавок, к которым относятся некоторые эфиры и спирты. Эти добавки повышают октановые характеристики топлив, регулируют их испаряемость. При этом в бензине растет содержание кислорода, способствующего дожигу оксида углерода в диоксид. К ним относится и этанол.

Главным конкурентом биоэтанола был еще один оксигенат — метилтретбутиловый эфир (МТБЭ), который превалировал на топливных рынках США. Так, в Штатах с целью улучшения экологической ситуации в мегаполисах и в штате Калифорния стал выпускаться специальный вид бензина (реформулированный бензин), содержащий добавки 5-15% МТБЭ. В период с 1992 г. по 2001 г. потребление МТБЭ в США возросло с 4,0 до 10,5 млн. т. Однако скоро выяснилась токсичность этого соединения, что не позволило ему длительно удерживать доминирующие позиции. Было обнаружено, что МТБЭ разлагается с выделением метанола, и его попадание в грунтовые воды может поставить под угрозу эффективное обеспечение населения водой. Вскоре противостояние биоэтанола и МТБЭ изменило свой вектор в кардинальном направлении: теперь на первый план безоговорочно вышел биоэтанол, что было утверждено законодательством США. По данным Ассоциации возобновляемого топлива, около 900 000 американских фермеров являются членами кооперативов по производству этанола.

Результатом таких реформ стал выпуск порядка 20 000 автомобилей, потребляющих бензин с примесью 85% этанола. На 2007 год около 3 миллионов таких автотранспортных средств находилось в эксплуатации. Многие известные автомобилестроители — такие, как «Ford», «General Motors» и «Daimler-Chrysler» — создают сотни тысяч автотранспортных средств, работающих как на обычном бензине, так и на бензине с примесью до 85% об. этанола. В этом же, 2007 году, производители или продавцы топлива, работающие в странах ЕС, обязаны были добавлять (blending-fuel) в бензины до 5% этанола (Директива 98/70/ЕС о качестве моторного топлива), что лишний раз подчеркивает актуальность и значимость данного направления в глазах мировой общественности.

Основными преимуществами биоэтанола перед конкурентами являются: высокая антидетонационная стойкость; улучшение процесса горения бензина (в связи с наличием кислорода в молекуле); полнота сгорания топлива и отсутствие токсичных и канцерогенных продуктов горения. Также облегчает его использование и простота получения этанола. Спирт научились делать из различного сырья с минимальными затратами.

Правда, существуют и незначительные недостатки спиртового топлива, в том числе: легколетучесть однородной жидкости; влияние на фракционный состав бензина; низкая теплота сгорания. Но это все мелочи по сравнению с его неоспоримыми достоинствами. Также следует упомянуть и о таком минусе, как гигроскопичность (довольно легкое смешивание с водой), благодаря которой смесь биоэтанола с бензином при наличии воды расслаивается. При правильном приготовлении и использовании смесевого топлива этот фактор также не доставит хлопот. Так, добавка стабилизаторов препятствует расслоению спиртосодержащего бензина до температуры -40 — -23°С. Хорошим и при этом дешевым стабилизатором являются сивушные масла, обеспечивающие гомогенность топлива при температуре выше -25°С.

Еще одним спорным моментом использования биоэтанолового топлива являются высказывания некоторых ученых относительно возможного негативного влияния продуктов горения смесевого бензина на парниковый эффект. Якобы при использовании этого топлива выбросы газов в атмосферу за следующие 30 лет удвоятся.

В противовес их пессимизму можно выставить такие доводы:

1) выделяющийся в атмосферу при эксплуатации подобных двигателей CO2 в достаточной мере поглощается растущей зеленой биомассой, дополняя углеродный цикл круговорота веществ в природе;

2) явление парникового эффекта и сопутствующие погодные катаклизмы, по мнению некоторых специалистов, могут быть вызваны не столько антропогенным (человеческим) фактором, сколько природными процессами смены магнитных полюсов Земли, которые неоднократно имели место в истории нашей планеты.

Единственный аргумент, который объективно препятствует безоговорочному лидированию смесевого топлива — это то, что оно несколько дороже своих классических аналогов. В частности, в США цены на автобензин в 2007 г. были на уровне 39 ц/л, биоэтанол — 66 ц/л, поэтому 1 л смесевого бензина (с 10% биоэтанола) стоил с учетом смешения почти на 18% дороже. Новые разработки, в том числе и в области промышленных биотехнологий, безусловно решат эту проблему в пользу смесевых биоэтаноловых бензинов.

Аргументов, которые способствуют внедрению этого топлива в производства, чуть больше: 1) спрос на потребление энергоресурсов в мире стремительно растет (по прогнозам одной из крупнейших мировых нефтегазовых компаний British Petroleum, прирост спроса на энергоресурсы к 2030 г. составит 50% в сравнении с уровнем 2005 года); 2) мировые запасы нефти и газа все быстрее сокращаются, оставляя для эксплуатации месторождения, зачастую отличающиеся сложными геолого-экономическими условиями и отдаленностью от мест потребления; 3) экологическая ситуация планеты ухудшается головокружительными темпами (во многом из-за бензиновых выхлопов), что крайне негативно отображается на здоровье людей и других живых организмов.

Не стоят в стороне от проблемы и постсоветские государства, о чем свидетельствует ряд принятых законопроектов.

В России: разработана и зарегистрирована в Минэкономразвития РФ нормативно-техническая документация на топливную добавку: с 1 июля 2002 г. введен ГОСТ Р51866-2002 (ЕН-228-99), предусматривающий выпуск автомобильных бензинов, содержащих до 5% спирта. Разработан и утвержден национальный стандарт ГОСТ Р52201-2004 «Топливо моторное этанольное для автомобильных двигателей с принудительным зажиганием». Важным моментом для развития топливного этанола в России стало утверждение ГОСТа на бензин с добавкой этанола. ГОСТ Р 52501-2004 «Топливо моторное этанольное для автомобильных двигателей с принудительным зажиганием. Бензанолы» позволяет производить и использовать топливо, содержащее до 10% об. этилового спирта и устанавливает общие требования к такому топливу. Хотя была и «ложка дегтя в бочке с медом»: в 2006 г. вступил в силу измененный Федеральный закон №102-ФЗ «О государственном регулировании производства и оборота этилового спирта, алкогольной и спиртосодержащей продукции». Этот закон существенно ограничивает использование топливного этанола.

В Украине: правительство приняло программу «Этанол» (2000 г.), предусматривающую выпуск как кислородсодержащей добавки к бензинам на базе этанола, так и бензинов, содержащих эту добавку. В результате были разработаны: ГСТУ 320.00149943.015-2000 на бензин, содержащий этанол; ТУ У 30183376.001 на высокооктановую кислородсодержащую добавку на базе этанола (до 6% масс.). Кроме того, недавно был принят законопроект, согласно которому предлагалось ввести обязательную 3% добавку биоэтанола (ethanol-blending) в моторные бензины уже с 1 января 2010 г.

Поскольку работа в этом направлении активно проводится, то важным является понимание того, каким образом можно эффективно и быстро получить смесевое топливо.

Установок для смешения жидкостей имеется множество: механические, электромагнитные, просто диффузионно-гравитационные, ультразвуковые. Целесообразность применения того или иного вида определяется разными условиями, в зависимости от требований к конечной смеси и установленным ее качествам.

Для приготовления смесевого топлива используются две основные технологии смешения.

Процесс смешения в объеме: это смешение базового компонента и присадок прямо в резервуаре. Данная технология применима лишь для небольших емкостей, ненадежна и давно уже устарела.

Следующая технология — смешения в потоке, имеет ряд неоспоримых преимуществ: простота в обслуживании; возможность точного контроля дозируемых компонентов; высокое качество конечного продукта; высокая производительность; возможность использования большого количества присадок; возможность контроля расходов компонентов и постоянного мониторинга, благодаря наличию различных анализаторов; возможность привязки оборудования как к новым объектам, так и к уже действующим; значительное сокращение продолжительности смесительного цикла и отказ от использования смесительных емкостей для обеспечения гомогенизации готового продукта. В поточном смесителе используется смесительный процесс, позволяющий одновременно подавать все компоненты в заданном рецептурном соотношении в общий смесительный коллектор, по которому готовый продукт подается в хранилищный резервуар.

Смешение в потоке производится двумя способами:

1) технология компаундирования (от англ. compound — смесь, соединение) дозированного впрыска. Она позволяет с помощью насоса подмешивать дополнительные вещества к базовому компоненту. Также, можно установить задвижки и связать их с компьютером, просчитывая объем впрыска компонента и т. д. У оператора есть утвержденная рецептура, на основании которой он добавляет к исходному веществу определенное количество необходимых присадок и в конечном результате получает бензин. Такое оборудование позволяет программировать объемы смешения и осуществлять его в потоке струйно-вихревого типа. По техническим характеристикам установки дозированного впрыска могут быть: большетоннажными (от 100 м3/час) и малотоннажными (до 100 м3/час). Недостатков у этой технологии хватает: во-первых, высокая стоимость оборудования; во-вторых — значительная энергоемкость производства, ведь для впрыска каждой присадки нужен отдельный насос; в-третьих, громоздкость и значительные габариты. Данная технология также морально и функционально устарела, уступая свое место эжекционному методу.

2) Гидродинамическое эжекторное смешение началось разрабатываться в связи с дефицитом высокооктановых топлив и серьезными экологическими проблемами от применения свинцовых добавок. Оборудование эжекторного типа — это набор смесителей, по специальной схеме установленных внутри резервуара. Дозирование производится либо самостоятельным, встроенным в линию подачи компонентов электронным счетчиком, либо имеющимися на предприятии средствами дозирования с установленной в рецептуре точностью. Основная стадия технологического процесса производства смесевых бензинов — беспрерывная эжекция топливных компонентов и их механическое мелкодисперсное ультразвуковое компаундирование (смешение). Струя основного потока под давлением не менее 0,7 МПа, проходя по жиклерам, создает разрежение в коллекторе установки. За счет созданного вакуума происходит дозируемая подача компонентов, добавок и присадок. Далее частично перемешанное в потоке и дозированное топливо попадает в смеситель, где разбивается в мелкодисперсную смесь и, проходя через ультразвуковую головку, смешивается окончательно. Значительную работу в этом направлении проводят ученые-технологи GLOBECORE, которыми разработано и поставлено на серийное производство целый ряд смесительных установок по компаундированию топлив и любых жидкостей в потоке, в том числе и с добавками растительного происхождения и биоэтанолом. Особенностью предлагаемого оборудования является то, что, применяя эжекционный метод и ультразвуковую систему смешивания, можно повысить октановое число бензина, при этом расслаивание полученного продукта не происходит в течение 180 дней. Также эта технология позволяет устранить неудобства, возникающие при обычных методах смешивания, известных на сегодняшний день, в результате которых топливо при добавлении отдельных составляющих частей имеет свойства расслаиваться.

Основными и неоспоримыми преимуществами технологии получения смесевых бензинов являются: экономическая рентабельность; сокращение объемов инвентаризации; снижение степени эксплуатации резервуарного парка; оптимальное использование компонентов; сокращение трудозатрат и обслуживающего персонала; увеличение производительности; эффективное и оптимальное использование оборудования; простота смесительных процессов (по заказу возможна автоматизация); сведение к минимуму влияния изменений в процессах переработки сырья на технологических установках НПЗ на качество готовой продукции, получаемой со смесительных установок; сведение к минимуму простоев транспорта при отгрузке готовой продукции; возможность производить готовый продукт напрямую с выгрузкой в бензовозы; улучшение планирования смесительных операций.

И это только начало длительного пути эволюции компаундирования биоэтаноловых топлив. Следующим этапом станет получение биотоплив второго поколения, которые будут производиться из различных отходов органического происхождения сельскохозяйственной, пищевой и лесной промышленности, не давая скептикам повода переживать о нерациональном использовании пахотных земель. В любом случае решения должны приниматься компетентными людьми, вооруженными соответствующими знаниями и умениями.

Другие материалы рубрики


  • Ветры бывают самые разнообразные: это и дующий десятки минут легкий бриз, и глобальные ветра — но все они существуют за счет солнечного нагрева планеты. Важными факторами влияния на атмосферную циркуляцию воздуха являются разность обогрева между экватором и полюсами, а также вращение нашей планеты, называемое эффектом Кориолиса. Сезонные колебания в скорости и направлении ветра являются результатом сезонных изменений из-за относительного наклона оси вращения Земли к Солнцу, которое, в свою очередь, изменяет паттерны разности обогрева. Ежедневные различия в обогреве атмосферы вызваны различным нагревом локальных областей поверхности земли, например, суши и океана. Еще движение воздуха осложняется целым рядом факторов глобального масштаба, таких как вращение Земли, а также сушей, горными хребтами и холмами, растительностью, океанами, морями и озерами. Из-за трения о поверхность земли, растительность и здания скорость ветра возрастает с увеличением высоты над поверхностью земли.

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • Недавно в новостях услышал информацию о том, что весной 2010 г. городское население планеты превысило сельское и составляет 51%. В 2020 г. городское население уже будет составлять 57%.
    Вроде бы ничего интересного. Сухая статистика.
    Но за этой статистикой просматривается очень настораживающая тенденция, если учесть, что за этот период население Земли вырастет с 6,8 до 8 миллиардов человек.
    Урбанизация растет огромными темпами.

    • Страницы
    • 1
    • 2


  • ...После более чем столетия нескончаемых усовершенствований двигатель внутреннего сгорания все еще имеет коэффициент полезного действия около 16%. КПД всех тепловых двигателей ограничено циклом Карно. Теоретически, даже при идеальных условиях тепловой двигатель, используемый для приведения в движение автомобиля или электрогенератора, не может преобразовать всю тепловую энергию в механическую. Некоторая часть тепла теряется. В двигателе внутреннего сгорания тепло подается от источника с высокой температурой (Т1), часть энергии преобразуется в механическую и оставшаяся часть выбрасывается при низкой температуре (Т2). Чем больше разность между этими температурами, тем выше КПД двигателя...

    • Страницы
    • 1
    • 2
    • 3


  • Еще с незапамятных времен люди использовали энергию ветра.
    Первоначально человек научился преобразовывать кинетическую энергию воздушного потока (ветра) в механическую. Появилось огромное разнообразие ветряных мельниц, значительно облегчивших жизнь людей того времени.
    Идея ветрогенератора для выработки электрической энергии с использованием энергии ветра появилась чуть более 100 лет назад.
    Пытливая мысль изобретателей создала огромное разнообразие конструкций ветроустановок:
    — по расположению оси вращения лопастей (горизонтальная, вертикальная, наклоненная);
    — по количеству лопастей (одна, две, три и более);
    — по мощности (от десятков Ватт до нескольких МВатт);
    — по форме лопастей, по конструкции генераторов и т.д.

    • Страницы
    • 1
    • 2


  • Чтобы получать тепло из снега, дождя и, что реже, града, нужен АТМОТЕРМ. Это устройство относится к стационарным приборам для нагревания текущих сред, использующий при прохождении данного процесса тепловой эффект экзотермической реакции образования гидроксида кальция из СаО, которая проходит при утилизации снежного покрова на месте его образования.
    Область применения устройства – генерация тепловой энергии для обогрева стен жилых и нежилых помещений, используя атмосферные осадки.
    Исследуя решения в данной области, мы не найдем наверняка устройства, объединяющего в себе функции переработки атмосферных осадков и обогревателя, работающего без подвода электроэнергии, при этом являясь таким экономичным, как атмотерм (экономичность смотрите дальше). Решения, предлагаемые другими авторами (смотри ниже) имеют ряд недостатков: потребляемость большого количества электроэнергии, узкая направленность технологий – только утилизация снега или только генерация тепловой энергии, сложность устройства, лежащее в наличии большого количества комплектующих компонентов, таких как ИК-излучатели и другие подобные устройства.

    • Страницы
    • 1
    • 2


  • ...В современных ВЭС воплощено множество технических идей, отвечающих последним достижениям науки. Вот далеко не полный перечень уникальных систем и механизмов, обеспечивающих эффективную и безопасную работу ветроэлектростанций: система динамического изменения угла атаки (изменяет угол заклинивания лопастей, удерживая тем самым нужный угол атаки); система динамического регулирования скорости вращения ветроколеса в зависимости от нагрузки и скорости ветра (выбирает оптимальный режим работы); система управления рысканием  — электронный флюгер (поворачивает гондолу с ВЭУ по особому закону с учетом доминирующего направления ветра, его порывов и турбуленции); система оперативного регулирования магнитного скольжения асинхронного генератора (используются усовершенствованные асинхронные генераторы с ротором «беличья клетка»)...

    • Страницы
    • 1
    • 2
    • 3
    • 4
    • 5


  • Многие ученые считают, что единственным масштабным и долговременным решением надвигающейся энергетической проблемы, одновременно удовлетворяющей условиям энергетической эффективности и экологической безопасности, является термоядерный синтез на базе использования лунного изотопа элемента гелия.
    Страна, которая опередит другие в освоении Луны и добычи гелия-3, станет лидером в мировой экономике, считает академик Эрик Галимов.



  • Теперь уже никто не сомневается, что в расстрельные 30-е годы прошлого века ничего прогрессивного в России существовать не могло. Старшее поколение стыдливо молчит, поскольку высказывать иную точку зрения ныне считается непатриотичным. А постперестроечное вообще не ведает, что в основе многих модных сейчас инновационных проектов лежат неосуществленные мечты почти восьмидесятилетней давности. Примером может служить история со сгущенным бензином.

    • Страницы
    • 1
    • 2


  • Нефте- и газодобыча уже в течение многих лет — ведущие отрасли российской экономики. В иные периоды они давали до 50% поступлений в федеральный бюджет. Это стало возможным только после введения в эксплуатацию крупнейших месторождений Западной Сибири. Поиск месторождений, ставших открытием века, стоил огромного труда. Основной вклад в него внесли сибирские геологи.
    Чтобы понять, где и как искать нефть, — а ее считают самым труднодоступным богатством планеты, — надо знать, как она образуется. В 1932 году была опубликована классическая работа основоположника советской нефтяной геологии Ивана Михайловича Губкина (1871-1939) «Учение о нефти», которая сыграла огромную роль в развитии представлений о происхождении нефти и формировании ее залежей. Он сформулировал четыре этапа образования нефтяных запасов, которые и сегодня лежат в основе научных воззрений о процессах нефтеобразования.

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • Экспоненциальный рост населения и истощение природных ресурсов заставляют ученых придумывать самые невероятные проекты по спасению планеты. Один из них — космические электростанции, передающие на Землю энергию Солнца посредством микроволнового излучения. Технология эта не столь фантастична, как может показаться на первый взгляд.
    Вполне возможно, что лет через тридцать на геостационарной орбите обоснуется группировка объектов, каждый из которых будет подозрительно напоминать «Звезду смерти». Необъятные зеркальные крылья, нечто вроде электромагнитной пушки и наземная приемная антенна километров десять в диаметре — так будет выглядеть система глобального энергоснабжения.
    Вернее, такой ее представляли конструкторы еще в 1970-х. И уже тогда это не было научной фантастикой! В связи с энергетическим кризисом американское правительство выделило $20 миллионов агентству NASA и компании Boeing на проработку проекта гигантского спутника SPS (Solar Power Satellite).