Биотопливо - Рапс

Сб, 03/29/2014 - 20:46

Рапс — однолетнее растение, холодостойкое, требовательное к влаге и плодородию почвы, хорошо произрастает в умеренной зоне. При укорочении светового дня вегетативная масса увеличивается, а семенная продуктивность снижается. У рапса различают озимые и яровые формы. Размножается рапс семенами

Семена рапса

Уборка рапса

Биодизельная установка — предназначена для производства биодизеля непрерывным методом в потоке, производительностью от 4000 кг/час до 16000 кг/час. Получаемое биодизельное топливо соответствует Евростандарту ЕN 14214 и Американскому стандарту АSТМ


Кризис XXI века

В начале нового тысячелетия почти весь мир столкнулся с новой, весьма болезненной проблемой — истощением топливных запасов планеты. Ученые с каждого угла кричали, что через 30 лет на земле не останется ни капли нефти. Но прошло уже 10 лет, и эти крики понемногу улеглись. Были найдены новые месторождения в Саудовской Аравии, в России разведали новые, огромные запасы сибирской и заполярной нефти. Единственная проблема — добраться до них, но учитывая сегодняшнюю стоимость «черного золота» на мировом рынке, это не будет составлять особого труда.

Но беда, как известно, не приходит одна. С топливной проблемой пришла проблема загрязнения окружающей среды обитания человека. Продукты сгорания бензина и дизтоплива стали настолько насыщать атмосферу Земли, что экологи забили тревогу. Их главный девиз — «Парниковый эффект!» К сожалению, они до сих пор не могут определиться, чем он грозит нашей планете — глобальным потеплением или новым ледниковым периодом. Впрочем, одно не исключает другое. Сначала довольно сильно потеплеет, арктические льды растают, опять понизят температуру, но настолько сильно, что 2/3 суши (по самым пессимистическим прогнозам) покроется снегом и льдом.

Что же делать? Отказаться от автомобильного транспорта и вообще от использования нефти и нефтепродуктов? В данный исторический отрезок времени это даже не теория, а какая-то фантазия Гринписа, если не сказать больше. Но нам надо как-то сберечь природу и при этом не нанести вреда экономике, как в мировом масштабе, так и в масштабе отдельной страны. И тут, к огромной радости почти всех экологов (почему почти — будет сказано ниже) на мировую топливную арену семимильными шагами выходит новое горючее — биодизель.

Панацея для Гринписа

Биодизель — биотопливо, производимое на основе растительных или животных жиров или масел. Биотопливо — это топливо из биологического сырья, получаемое, как правило, в результате переработки семян рапса, кукурузы, сои. Как эти слова радуют экологов! Все компоненты для производства натуральные, а значит, количество выбросов в атмосферу будет минимальным. Давайте поближе рассмотрим все достоинства и недостатки данного горючего, а так же его применение в реальной жизни.

Применение — применяется на автотранспорте в чистом виде и в виде различных смесей с дизельным топливом. Применение смесей не требует внесения изменений в двигатель. В общем, как обычное горючее для большинства среднего и тяжелого дизельного автотранспорта.

Достоинства — их можно поделить на 2 части — экологические, и, что самое важное, экономические.
Экологические. Биодизель, как показали опыты, при попадании в воду не причиняет вреда растениям и животным. Кроме того, он подвергается практически полному биологическому распаду: в почве или в воде микроорганизмы за 28 дней перерабатывают 99% биодизеля, что позволяет говорить о минимизации загрязнения рек и озер.

Сокращение выбросов СО2. При сгорании биодизеля выделяется ровно такое же количество углекислого газа, которое было потреблено из атмосферы растением, являющимся исходным сырьем для производства масла, за весь период его жизни. Биодизель в сравнении с обычным дизельным топливом почти не содержит серы. Это очень хорошо с точки зрения экологии.

Другие материалы рубрики


  • ...После более чем столетия нескончаемых усовершенствований двигатель внутреннего сгорания все еще имеет коэффициент полезного действия около 16%. КПД всех тепловых двигателей ограничено циклом Карно. Теоретически, даже при идеальных условиях тепловой двигатель, используемый для приведения в движение автомобиля или электрогенератора, не может преобразовать всю тепловую энергию в механическую. Некоторая часть тепла теряется. В двигателе внутреннего сгорания тепло подается от источника с высокой температурой (Т1), часть энергии преобразуется в механическую и оставшаяся часть выбрасывается при низкой температуре (Т2). Чем больше разность между этими температурами, тем выше КПД двигателя...

    • Страницы
    • 1
    • 2
    • 3


  • Ситуация с термоядерной энергетикой сегодня довольно любопытна и имеет общие черты с начинавшейся некогда «космической гонкой». Открытие способа, открывающего доступ к неограниченному источнику энергии, казалось бы, уже «витает в воздухе». Уже всерьёз проектируются термоядерные электростанции. Уже почти видна финишная ленточка и вопрос лишь в том, кто успеет раньше. Руководители развитых государств ревностно следят за «успехами» конкурентов в этой области и боятся остаться «не солоно хлебавши». Эти страхи умело эксплуатируют крупные исследовательские центры, работающие по данной проблеме, добиваясь щедрого финансирования. Вот-вот и пресса возвестит об открытии века...


  • При минусовой температуре проблемы с запуском двигателя гарантированы. Это знает каждый опытный автомобилист, которому не раз приходилось подолгу просиживать в холодном салоне, пытаясь завести автомобиль. А вот о причинах этих самых проблем думает далеко не каждый водитель. Еще до того, как температура опустится ниже нуля, важно сменить все жидкости в автомобиле на незамерзающие. Это касается моторного масла, охлаждающей жидкости, жидкости в бачке омывателя. Нужно тщательно смазать стартер и прочие системы мотора, от этого также зависит степень прилагаемых для запуска двигателя усилий в сильный мороз.



  • Сначала приведем высказывание российского геофизика Е.П. Борисенкова о прошлом человечества:
    «Причины гибели или упадка некоторых цивилизаций, а также многие неблагоприятные социальные явления в период средневековья так же, как и в древней истории, были связаны с экологией.
    Если мышление человека античности в ряде случаев было настолько эгоистичным, что, несмотря на свои выдающиеся по тому времени научные и естественные познания, он не думал о связи между лесом, водой, почвой и последствиями своей деятельности, то и в период средневековья человечество ушло от этого уровня понимания не очень далеко».

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • Ветры бывают самые разнообразные: это и дующий десятки минут легкий бриз, и глобальные ветра — но все они существуют за счет солнечного нагрева планеты. Важными факторами влияния на атмосферную циркуляцию воздуха являются разность обогрева между экватором и полюсами, а также вращение нашей планеты, называемое эффектом Кориолиса. Сезонные колебания в скорости и направлении ветра являются результатом сезонных изменений из-за относительного наклона оси вращения Земли к Солнцу, которое, в свою очередь, изменяет паттерны разности обогрева. Ежедневные различия в обогреве атмосферы вызваны различным нагревом локальных областей поверхности земли, например, суши и океана. Еще движение воздуха осложняется целым рядом факторов глобального масштаба, таких как вращение Земли, а также сушей, горными хребтами и холмами, растительностью, океанами, морями и озерами. Из-за трения о поверхность земли, растительность и здания скорость ветра возрастает с увеличением высоты над поверхностью земли.

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • Солнце — основной источник энергии на планете. В полдень на низких широтах плотность потока энергии солнечного излучения близка к 1 кВт/м²,, в среднем по освещенной части земного шара — 350 Вт/м². Потенциальный ресурс энергии огромен. Ей соответствует мощность 6,7∙1016 Вт. Теоретически КПД преобразования энергии может достигать 93%. Сейчас он составляет 10…30%. КПД определяет технический ресурс, равный произведению КПД на потенциальный ресурс.
    В настоящее время энергия солнечного излучения используется мало из-за относительно низких значений плотности потока энергии (100 — 1000 Вт/м²).
    Разрабатываются проекты создания солнечных энергосистем на геостационарной орбите с мощностью 1…10 ГВт. Передачу энергии на Землю планируется осуществлять при помощи мощных электромагнитных пучков на длине волны около 5…10 см.

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • Многие ученые считают, что единственным масштабным и долговременным решением надвигающейся энергетической проблемы, одновременно удовлетворяющей условиям энергетической эффективности и экологической безопасности, является термоядерный синтез на базе использования лунного изотопа элемента гелия.
    Страна, которая опередит другие в освоении Луны и добычи гелия-3, станет лидером в мировой экономике, считает академик Эрик Галимов.



  • ...Возможность установки ветрогенераторов также зависит от климата, а конкретнее – от средней скорости ветра в данной местности. Трудно спрогнозировать, каковы будут скорость и направление ветра в определенный момент. Но если рассматривать большие временные промежутки, соизмеримые со сроком эксплуатации ветряка, то можно довольно точно сказать, что, например, в течение года в месте его установки будет 4000 часов со скоростью ветра более 4 м/с, что обеспечит гарантированную генерацию, условно говоря, 1000 КВт·ч в год. В частности, у нас средняя скорость ветра составляет около 5 м/с, что вполне пригодно для получения ветровой энергии, так как рекомендуемая скорость ветра для этих целей 4 м/с и более.

    • Страницы
    • 1
    • 2
    • 3


  • Еще в 212 году до н. э. древнегреческий ученый Архимед использовал светоотражающие свойства бронзовых боевых щитов для того, чтобы сосредоточить солнечный свет и поджечь вражеские деревянные суда римлян, осаждающих его родной город Сиракузы. Но прошло почти полтора тысячелетия, за время которых люди продолжали греться на солнышке, не задумываясь, какой мощный источник представляет собой это божественное дневное светило. И лишь в 1600 г. во Франции был создан первый солнечный двигатель, работавший на нагретом воздухе и использовавшийся для перекачки воды. В конце XVII в. ведущий французский химик Антуан Лоран Лавуазье создал первую солнечную печь, в которой достигалась температура в 1650°С и нагревались образцы исследуемых материалов в вакууме и защитной атмосфере, а также были изучены свойства углерода и платины. В 1833 г. в США Дж. Эриксон построил солнечный воздушный двигатель с параболоцилиндрическим концентратором размером 4,8х3,3 м. Первый плоский коллектор солнечной энергии был построен французом Ш.А. Тельером. Он имел площадь 20 м2 и использовался в тепловом двигателе, работавшем на аммиаке.

    В 1866 г. французский математик Август Мушо построил в Алжире несколько крупных солнечных коллекторов, ставших прообразами современных, и использовал их для дистилляции воды и приводов насосов. На всемирной выставке в Париже в 1878 г. А. Мушо продемонстрировал солнечную печь для приготовления пищи, в которой 0,5 кг мяса можно было сварить за 20 минут. Первая крупномасштабная установка для дистилляции воды была построена в Чили в 1871 г. американским инженером Ч. Уилсоном. Она эксплуатировалась в течение 30 лет, поставляя питьевую воду для рудника. В 1890 г. профессор В.К. Церасский в Москве осуществил процесс плавления металлов солнечной энергией, сфокусированной параболоидным зеркалом, в фокусе которого температура превышала 3000°С. Однако только в 1980-е годы были созданы первые крупномасштабные солнечные электрогенераторы.

    • Страницы
    • 1
    • 2


  • Многие десятилетия неизменным элементом пейзажа промышленной нефтедобычи являлись грандиозные факелы, в которых сгорал попутный газ — неизбежный спутник нефтедобычи. Громадные шлейфы дыма простирались на десятки и сотни километров и были прекрасно видны даже из космоса. Так было долго и казалось, что так будет всегда. Но все меняется в этом мире, и иногда — в лучшую сторону.

    • Страницы
    • 1
    • 2