Борьба с сердечно-сосудистыми заболеваниями

Сб, 04/19/2014 - 19:19

Рис. 1. Клетки печени постоянно выбрасывают в кровоток длинный пептид ангиотензиноген.

Рис. 2. Сердечно-сосудистый континуум: путь от гипертонии до поражения сердца, сосудов, почек и других органов.

Рис. 3. Прямой ингибитор ренина (ПИР) встраивается в активный центр ренина и не дает ему расщепить ангиотензиноген

-

Пожалуй, сегодня нет более распространенной хронической болезни, чем гипертония (повышенное артериальное давление). Даже медленное и как бы незаметное ее течение в конце концов приводит к фатальным последствиям — инфарктам, инсультам, сердечной недостаточности, поражению почек. Еще в позапрошлом веке ученые выяснили, что в почках вырабатывается белок — ренин, вызывающий повышение давления крови в сосудах. Но лишь спустя 110 лет совместными усилиями биохимиков и фармакологов удалось найти эффективное средство, способное противостоять опасному действию давно известного вещества.

В начале 1990-х годов в России стало расти число сердечно-сосудистых больных. И до сих пор в нашей стране уровень смертности среди трудоспособного населения превышает европейские показатели. Особенно неустойчивыми к социальным катаклизмам оказались мужчины. По данным Всемирной организации здравоохранения, продолжительность жизни мужчин составляет в нашей стране всего лишь 59 лет. Женщины оказались выносливее — они живут в среднем 72 года. Каждый второй гражданин нашей страны умирает от сердечно-сосудистых заболеваний и их последствий — инфарктов, инсультов, сердечной недостаточности и пр.

Одна из главных причин сердечно-сосудистых заболеваний — атеросклеротическое поражение сосудов. При атеросклерозе утолщается внутренняя оболочка сосуда, образуются бляшки, которые суживают или полностью закупоривают просвет артерии, что нарушает кровоснабжение жизненно важных органов. Основная причина атеросклеротического поражения сосудов — нарушение жирового обмена, в основном повышение содержания холестерина.

Другая, не менее важная и наиболее распространенная причина сердечно-сосудистых заболеваний — гипертоническая болезнь, которая проявляется устойчивым повышением артериального давления. Повышение артериального давления также приводит к поражению сосудов, а именно: просвет сосуда суживается, его стенка утолщается (развивается гипертрофия мышечного слоя), нарушается целостность внутренней выстилки сосуда — эндотелия. Такие изменения называются ремоделированием сосудов. Все это приводит к тому, что пораженный атеросклерозом сосуд теряет эластичность, перестает пульсировать под действием кровотока. Если здоровые сосуды можно сравнить с гибкими каучуковыми трубками, передающими пульсовую волну и гасящими турбулентность кровотока, то патологические сосуды похожи на металлический трубопровод. Ремоделирование сосудов способствует прогрессированию атеросклероза.

Гипертония как причина инфарктов и инсультов

Гипертония зачастую протекает как бы незаметно. Больные не знают о том, что больны, не меняют образ жизни, не обращаются к врачу и не принимают лекарства. Между тем гипертонию по ее разрушающему действию на организм вполне можно назвать «тихим убийцей». Если болезнь развивается быстро, то она приводит к прогрессированию атеросклероза и в конечном итоге — к инфаркту, инсульту, гангрене нижних конечностей. Если же болезнь протекает длительно и организм успевает приспособиться к закупорке сосудов, развивается поражение сердечной мышцы (сначала гипертрофия, а затем — атрофия миокарда, что приводит к хронической сердечной недостаточности), почек (альбуминурия — потеря белка с мочой, нарушение почечной функции и в итоге — почечная недостаточность) и нарушение обмена веществ (непереносимость глюкозы, а потом сахарный диабет).
Причины гипертонии до конца не изучены, хотя исследования в этом направлении ведутся уже более столетия. Как возникает гипертония и почему вызывает такие смертельно опасные осложнения? Ответ на эти вопросы дает биохимия.

Молекулы, повышающие давление

О роли биохимических нарушений в развитии гипертонии стало известно достаточно давно. В 1897 году профессор физиологии Каролинского университета в Стокгольме, финн по происхождению, Роберт Тигерстедт на международной конференции в Москве сообщил о сделанном им открытии. Вместе со своим помощником Пером Густавом Бергманом он обнаружил, что внутривенное введение экстракта почек вызывает повышение давления у кроликов. Вещество, повышающее давление, ученые назвали ренином. Доклад Тигерстедта не произвел сенсации, более того — исследование сочли мелким, незначащим, сделанным ради очередной публикации. Разочарованный профессор прекратил свои изыскания и в 1900 году вернулся в Хельсинки. Бергман занялся врачебной практикой, и о пионерской работе скандинавских физиологов научный мир забыл на 40 лет.

В 1934 году канадский ученый, работавший в Калифорнии, Гарри Голдблатт, вызвал симптомы артериальной гипертонии у собак путем пережатия почечной артерии и приступил к выделению белкового вещества — ренина из почечной ткани. Так было положено начало открытиям в области механизма регуляции артериального давления. Правда, получить препарат чистого ренина Голдблатту удалось только через 30 лет.

Буквально год спустя после первой публикации Голдблатта, в 1935 году, сразу две исследовательские группы — из Буэнос-Айреса под руководством Эдуардо Мендеза и американская под руководством Ирвинга Пэйджа — независимо друг от друга, также используя технику пережатия почечной артерии, выделили другое вещество, повышающее артериальное давление. В отличие от крупной белковой молекулы ренина, это был небольшой пептид, состоящий всего из восьми аминокислот. Американские исследователи назвали его гипертензином, а аргентинские — ангиотонином. В 1958 году во время неформальной встречи за бокалом мартини ученые сравнили результаты полученных исследований, поняли, что имеют дело с одним и тем же соединением и пришли к компромиссному соглашению о химерном названии открытого ими пептида — ангиотензин.

Итак, основные соединения, повышающие давление, были открыты, не хватало только связующих звеньев в механизме развития гипертонии. И они появились. В конце 50-х годов ХХ века сформировалась концепция о функционировании ренин-ангиотензиновой системы (РАС).
Классическое представление о том, как функционирует РАС, показано на рис. 1.

Именно ангиотензин II, воздействуя на определенные рецепторы, приводит к росту артериального давления, а при длительной активации РАС — к драматическим последствиям в виде поражения сердца, сосудов, почек и в конечном итоге — к смертельному исходу (рис. 2).

Обнаружено несколько типов рецепторов ангиотензина II, самые изученные из которых рецепторы 1-го и 2-го типов. Когда ангиотензин II взаимодействует с рецепторами 1-го типа, организм отвечает спазмом сосудов и повышением выработки альдостерона. Альдостерон — гормон коры надпочечников, отвечающий за задержку жидкости в организме, что также способствует повышению артериального давления. Так что рецепторы 1-го типа отвечают за «вредное» действие ангиотензина II, то есть за повышение артериального давления. Взаимодействие ангиотензина II c рецепторами 2-го типа, напротив, приводит к благоприятному эффекту в виде расширения сосудов.

Как выяснилось, губительное действие ангиотензина II не исчерпывается повышением давления. Последние исследования показывают, что связывание ангиотензина II с рецепторами 1-го типа способствует развитию атеросклероза. Оказалось, что ангиотензин II вызывает воспалительные процессы в стенках кровеносных сосудов, способствует образованию активных форм кислорода и в результате нарушает структуру и функции эндотелия — клеток, выстилающих стенки сосудов. Нарушение функции эндотелия приводит к развитию атеросклероза и ремоделированию стенок сосудов. Итак, ренин-ангиотензиновая система (РАС) играет ключевую роль как в повышении давления, так и в развитии атеросклероза. Ученые нашли, что гены, отвечающие за работу белков, вовлеченных в РАС, определяют предрасположенность человека к гипертонии и сердечно-сосудистым заболеваниям. Если определенные гены активны, то РАС тоже гиперактивируется, и вероятность развития гипертонии и сердечно-сосудистых заболеваний возрастает в несколько раз.

Другие материалы рубрики


  • Новый пандемический штамм вируса А возникает каждые 20-70 лет (штаммы гриппа отличаются набором гемагглютинина и нейраминидазы), за 2-3 года в рамках штамма возникает эпидемический серотип — вариант вируса с другим строением поверхностных белков. Именно он приводит к крупным эпидемиям. Считается, что источником нового пандемического штамма гриппов А являются животные — водоплавающие птицы и свиньи. Причем новые штаммы возникают в сельских районах Китая. Исключением является «Сиднейский» вирус — это австралийский штамм А/Сидней/5/97 (H3N2), вызвавший эпидемию в Восточной Европе в 2000 г.

    • Страницы
    • 1
    • 2
    • 3


  • Читая статьи современных гистологов и молекулярных биологов, мы обнаружим в них диковинный термин «рабочие рельсового разрушения» — и не сразу поймем, что речь идет об обычных путейцах-ремонтниках. Оказывается, есть некие «рабочие», скопление которых и активное функционирование всегда приурочено к повреждениям некоей колеи... Но — обо всем по порядку.



  • Стволовые клетки таят в себе невиданные возможности: от регенерации поврежденных органов и тканей до лечения заболеваний, не поддающихся лекарственной терапии. Но реально ли применение этих клеток в медицине? Сумеют ли врачи приступить к лечению больных с их помощью сразу же после отмены соответствующих ограничений? По-видимому, нет. Даже сама идентификация стволовых клеток — это проблема. Прежде чем проводить те или иные эксперименты, необходимо убедиться, что эти клетки действительно являются тем «стволом», из которого, как ветви, вырастают все другие типы клеток, а также, что они способны к самовоспроизведению.
    Наиболее универсальны эмбриональные стволовые (ES — embrionic stem) клетки, впервые выделенные из мышиных эмбрионов 20 лет назад. Они были взяты на самой ранней стадии развития плода из той его части, которая в норме дает начало трем разным слоям (зародышевым листкам) более позднего эмбриона и, в конце концов, — всем органам и тканям. Это свойство ES-клеток предопределило их название — плюрипотентные.
    Большинство ES-клеточных линий человека, находящихся сегодня в распоряжении ученых, получены от необычных эмбрионов — они были созданы в результате искусственного оплодотворения in vitro. Однако при этом не все они идентичны.

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • Нобелевскую премию по медицине в 2011 году разделили на две половины. Одну получили Брюс Бютлер, профессор генетики и иммунологии Исследовательского института Скриппса (Ла-Хойя, США), и Жюль Хоффман, бывший руководитель лаборатории в Страсбургском университете, директор Института молекулярной биологии клетки, президент Французской академии наук в 2007–2008 годах (ныне в отставке), — за исследование механизмов активации врожденного иммунитета. Вторую половину присудили Ральфу Стайнману, выходцу из Канады, занимавшему пост профессора иммунологии в Рокфеллеровском университете (Нью-Йорк), — за открытие роли дендритных клеток в адаптивном иммунитете.
    Сразу вслед за именами лауреатов 3 октября 2011 года в новостных лентах появились сообщения о смерти Ральфа Стайнмана. Он скончался 30 сентября, а Нобелевский комитет не получил этой информации вовремя. Согласно уставу, самая престижная научная премия не может быть присуждена человеку, которого нет в живых, однако Нобелевский комитет объявил, что Стайнман остается лауреатом: на момент принятия решения не было известно о его кончине, таким образом, сделанный выбор соответствует духу премии, если не букве. И в конце концов, альтернативное решение общественность едва ли приняла бы с симпатией.



  • Еще с доврачебных, шаманских времен в лекарском искусстве господствовал взгляд на болезнь как на результат вторжения в организм какого-то враждебного внешнего агента: ранящего оружия, паразита, яда, злого духа и т. д. Основатели античной медицины предложили другое понимание: болезнь — это прежде всего внутренний разлад, нарушение порядка и равновесия в самом организме. Долгое время эти концепции боролись между собой: каждая из них претендовала на универсальность, и в моду входила то одна, то другая. В конце концов они поделили между собой сферы влияния: болезни были разделены на вызываемые внешними факторами и происходящие от внутренних причин. И только сравнительно недавно, во второй половине прошлого века, медики начали понимать, что это деление условно и что в развитии почти всякой болезни внешние и внутренние причины взаимодействуют между собой самым причудливым образом.



  • Опустошительные пандемии и эпидемии чумы оставили разрушительный след в истории человечества. На протяжении последних двух столетий медики работали над созданием профилактической и лечебной вакцины от смертельно опасной инфекции. Иногда испытания новых препаратов стоили подвижникам жизни. Во второй половине ХХ века появились новые эффективные вакцины и антибактериальные препараты, которые дали людям надежду на полное избавление от «черной смерти». Но на самом деле почва для возникновения новых эпидемий чумы по-прежнему существует.

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • На первом этапе развитие нанотехнологии определялось в основном созданием устройств зондовой микроскопии. Ведь для того, чтобы что-то сделать, нужны инструменты, а эти устройства являются своеобразными глазами и руками нанотехнолога. В наше время прогресс в области нанотехнологии связан, в основном, с разработкой наноматериалов для аэрокосмической, автомобильной, электронной промышленности, но не ограничивается этими сферами. Все чаще нанотехнологии внедряют в медицину.
    Это связано с тем, что современная технология позволяет работать с веществом в масштабах, характерных для основных биологических структур — клеток и их составных частей (органелл) и молекул. Так что о наномедицине как об отрасли медицины уже можно смело говорить. Отрадно, что мы учимся ремонтировать не только машины, но и живые организмы.

    • Страницы
    • 1
    • 2


  • Остеохондроз представляет собой поражение (дистрофический процесс) межпозвонковых дисков и других позвоночных тканей. В процессе развития данного недуга происходит сжатие позвоночника, что приводит к механическому разрушению дисков.



  • Травмоопасность детей хорошо известна всем родителям. Бывает: стоит отвернуться – и уже ребенок упал, ушибся, возможен перелом, срочно нужен врач. Детская травматология Киева на левом берегу находится на улице Алишера Навои. Далековато ехать по пробкам. К тому же если произошла травме головы, оттуда все равно направят на Подвысоцкого. Живя на Троещине, не обязательно ездить далеко. Частные клиники на Троещине в своем штате имеют врачей всех специальностей, в том числе и травматологов.



  • Этот поэтический образ родился в Древней Греции, когда народная молва сохраняла за богами человеческие качества, умножая их всемогуществом.
    Любвеобильный Зевс постоянно изменял своей жене — богине Гере, вступая в интимные связи с прекрасными, но земными женщинами. Естественно, это заканчивалось рождением детей, которых, однако, громовержец не оставлял своими заботами. Младенец Геракл тоже находился под его божественным покровительством: желая дать сыну бессмертие, Зевс решил напоить его молоком Геры.
    Очевидно, уже в античном мире сложились представления о том, что с женским молоком ребенок получает не только питание, но и многое из того, что определит его жизненный путь. Но вернемся к мифу. Опыт по использованию богинь в качестве кормилиц не удался. Узнав чужого младенца, да еще и плод супружеской измены, Гера возмущенно оттолкнула дитя. По другой версии, шустрый Геракл все-таки куснул сосок, причинив богине сильную боль. Так или иначе, но струя Вторая Мировая война
    Современные конфликты
    молока из божественной груди пересекла небесный свод, и отдельные капельки, превратившись в звезды, образовали Млечный Путь. А те капли, которые попали на Землю, расцвели в виде прекрасных белых лилий.

    • Страницы
    • 1
    • 2
    • 3
    • 4