Дальние планеты

Пнд, 04/01/2013 - 21:21

Так должен выглядеть звездолет «Дедал» с ядерным двигателем. Но будет ли он когда-нибудь построен?

Принцип гравитационного маневра подобен игре в бильярд. Маленький шарик отскакивает от большого, катящегося ему навстречу, с большей скоростью.
И космический аппарат, облетая летящую в пространстве звезду, тоже приобретает добавочное ускорение

Талантливый исследователь и ученый И. О. Ярковский предсказал эффект,
носящий теперь его имя

Эффект Ярковского. Космическое тело нагревается светом звезды и начинает испускать тепловое излучение в пространство. Этот «фотонный двигатель» способен сообщить телу значительное ускорение



В нашей Галактике за пределами Солнечной системы обнаружено несколько сотен планет. Исследовать их проще и дешевле при помощи автоматических зондов сверхмалого размера. Запускать эти аппараты можно с Земли из электромагнитной пушки, а ускорять и корректировать орбиты будут гравитационные поля встречных звезд.
Полеты к звездам — любимая тема фантастов и авторов компьютерных игр. Лихо носятся их звездолеты на просторах Галактики! Вот только неясно — как и зачем? Но эти вопросы не очень волнуют любознательных читателей: «как» — это придумают инженеры, а уж «зачем» — вообще неприлично спрашивать. Вы только представьте: новые неизведанные миры, братья по разуму... Разве это неинтересно?!

Но не все фантазии удается воплотить в жизнь. Романтическая эпоха поиска внеземных цивилизаций, рожденная в начале 1960-х успехами космонавтики и радиоастрономии, к концу столетия почти сошла на нет. Космонавтика оказалась дорогим и сложным делом — дальше Луны человек проникнуть не смог. А упорные попытки радиоконтакта с братьями по разуму результата не принесли. Тут бы и поставить крест на мечте о межзвездных перелетах. Ан нет! Именно теперь эта мечта обретает почву под ногами.

Планеты далеких солнц

После 1995 года астрономы могут совершенно точно ответить на вопрос, куда и зачем следует отправлять звездолеты. Именно тогда была открыта первая настоящая планета за пределами Солнечной системы.
А сегодня изучено несколько тысяч звезд в окрестностях Солнца — и рядом с сотнями из них обнаружены планеты. Но об этих планетах мы почти ничего не знаем. Собственно говоря, мы до сих пор их даже не видели!
Дело в том, что открытие планет у других звезд происходит путем наблюдения самой звезды: ее слабое покачивание, вызванное притяжением планеты, выдает присутствие самой планеты, но ничего важного о ней не сообщает. Обладает ли планета атмосферой? Какова природа планеты? Каковы условия на ее поверхности? Существует ли там жизнь? Ответить на эти вопросы невозможно, пока мы наблюдаем звезду издалека. Как бы ни был силен телескоп, он не может рассмотреть скромную планету, живущую рядом с ярким светилом: свет звезды ослепляет наши оптические приборы.
В ближайшие годы астрономы надеются создать специальные «многоглазые» телескопы на околоземной орбите, которые смогут отделить слабый свет далекой планеты от яркого света соседней с ней звезды. Если это получится, то, проанализировав излучение планеты, мы выясним, есть ли у нее атмосфера. Но узнать что-либо о природе поверхности и о наличии жизни на планете, наблюдая ее с расстояния в десятки световых лет, вряд ли удастся. Ученые не могли понять природу соседней с нами планеты — Марса, пока автоматические зонды не подлетели к нему вплотную. Что уж тут говорить о планетах иных звезд — к ним надо лететь!

Цена межзвездного перелета

Если оставить в стороне изобретения фантастов — разнообразные кабины нуль-транспортировки и сверхсветовые крейсеры, ныряющие сквозь четвертое измерение, то для межзвездных путешествий остается не так уж много возможностей: ракета, солнечный парус и катапульта. Ракета несет собственный источник энергии, солнечный парус использует энергию излучения Солнца, а катапульта за счет земного источника энергии выстреливает корабль к звездам. Космические инженеры уже давно прорабатывают все три варианта, но результаты пока неутешительны.
Очень заманчиво выглядит идея использовать энергию самого мощного источника, каким мы располагаем, — нашего Солнца. Если применить парус из сверхтонкой пленки размером в несколько километров, давление солнечного света может разогнать корабль до большой скорости. Первые эксперименты с солнечным парусом уже проведены, но, к сожалению, неудачные.

Предстоит решить много проблем: нужно научиться управлять гигантским полотнищем и придумать, что делать после разгона. Удалившись от Солнца, корабль теряет источник ветра, а значит, и возможность маневра.
Более перспективно выглядит идея ракеты, и проработана она значительно глубже. Есть даже конкретный проект ядерного звездолета «Дедал», созданный английскими инженерами и доведенный до высокой степени совершенства. Правда, до сих пор ядерные ракеты не создавались, но это вполне возможно. Еще в конце 1960-х проводились успешные эксперименты с ядерными двигателями на Земле, но в космос на них пока не летали. По сравнению с химическим топливом, которое обычно используется для полета ракет, ядерное топливо в сотни раз выгоднее. Корабль «Дедал» может за 50-100 лет долететь до соседней звезды, доставить туда экипаж или автоматический зонд и вернуться обратно.
В принципе, современная техника готова воплотить этот проект в металле. Но затраты будут грандиозные и потребуют напряжения всей экономики человечества. Больше одного такого корабля нам в течение века не построить: для этого просто не хватит земных ресурсов. И вот, предположим, создали мы один корабль с ядерным двигателем. А вокруг нас тысячи звезд с неизученными планетами. Куда же послать этот единственный корабль? Как выбрать цель?

Представляете, пошлем мы экспедицию к одной звезде, и через 100 лет выяснится, что ошиблись, надо было к другой, более интересной.
Нужно заметить, что с подобной проблемой космонавтика уже столкнулась. Первые экспедиции автоматических аппаратов к Венере, Марсу, Юпитеру стоили очень дорого; еще дороже — экспедиции людей на Луну. Но в погоне за престижем не считались с затратами. В последние годы изучение планет стало нормальной научной задачей, его финансирование сократилось. Поэтому космические инженеры перешли к тактике «проще и дешевле»: от пилотируемых экспедиций отказались, а зонды делают унифицированными, почти конвейерной сборки.

Вступая в эпоху межзвездных экспедиций, нужно взять все лучшее, что наработала современная космонавтика, дополнив это новыми или забытыми старыми идеями. Такой симбиоз идей, по странному стечению обстоятельств, предложили российские ученые еще в прошлом и даже в позапрошлом веках. Возможно, реализация этих идей позволит приступить к прямому исследованию звезд и окружающих их планет уже в ближайшие десятилетия.

Гравитационные маневры

Слово «маневры» настраивает нас на военный лад. И правда, некоторые элементы нового проекта связаны с военной техникой. Помните, перечисляя принципы межзвездных перелетов, мы упомянули катапульту. Давно известно, что выстрел из пушки — наиболее дешевый способ запуска космического аппарата, однако по разным причинам его до сих пор не применяли. Но если для межзвездных исследований мы выберем стратегию «проще и дешевле», то без пушки не обойтись.
В рамках противоракетной программы звездных войн были спроектированы электромагнитные ускорители массы — орудия для поражения в космосе ядерных боеголовок. Еще десять лет назад лабораторные образцы этого устройства ускоряли снаряд массой 10 г до скорости около 10 км/с. Полномасштабные ускорители должны разгонять аппараты массой 1 кг до скорости 30-40 км/с. Для звездных войн этого достаточно. Дальнейшее повышение скорости связано со значительным ростом размера ускорителя: его длина превысит километр, что сделает устройство слишком неуклюжим в глазах военных. Но для уникального проекта запуска межзвездных зондов это не препятствие. Технически возможно создать космический электромагнитный ускоритель, разгоняющий небольшие зонды до скорости более 100 км/с. Используя в качестве источника энергии солнечные батареи, такая катапульта практически бесплатно сможет посылать небольшие научные зонды за пределы Солнечной системы. А дальше начинается самое интересное.

Опираясь на идею замечательного русского инженера Юрия Васильевича Кондратюка (1897—1941), траектории межпланетных перелетов часто прокладывают вблизи планет не только для их исследования, но и чтобы притяжение одной планеты дополнительно разогнало и развернуло космический аппарат в направлении другой, более далекой планеты. Этот «фокус» называют гравитационным или, реже, пертурбационным маневром. Его неоднократно применяли во время путешествия «Пионеров» и «Вояджеров» по маршруту Земля—Юпитер—Сатурн—Уран—Нептун. Для осмотра полярных областей Солнца аппарат «Улисс» полетел по маршруту Земля—Юпитер—Солнце. А чтобы добраться до самого Юпитера без лишних затрат горючего, аппарат «Галилей» был запущен по маршруту Земля—Венера—Земля—Юпитер.

Гравитационный маневр — очень выгодный прием. Пролет мимо каждой промежуточной планеты планируется таким образом, чтобы ее притяжение ускорило космический аппарат и сообщило ему нужное направление движения к следующей планете. Механику этого эффекта легко понять на простом примере. Если по столу катится массивный шар, а навстречу ему — легкий, то при столкновении шаров массивный почти не изменит своей скорости, а легкий отскочит от него с увеличенной скоростью. То же самое происходит при «гравитационном столкновении» планеты с летящим навстречу ей космическим аппаратом. Отличие лишь в том, что столкновение твердых тел происходит почти мгновенно в момент их касания, а гравитационное растянуто на время пролета. Но законы механики действуют одни и те же. Поэтому и результат тот же: совершив облет планеты в правильном направлении, космический аппарат увеличивает скорость.

Звезда-катапульта

Итак, специальный выбор траектории, проходящей в окрестностях планет, дает возможность космическому аппарату без затраты топлива увеличить свою скорость и даже покинуть Солнечную систему, как это удалось «Пионерам» и «Вояджерам». Необходимая для этого энергия черпается из энергии движения планет. А нельзя ли использовать этот же принцип для путешествий на просторах Галактики? Ведь звезды тоже движутся в пространстве, значит, гравитационный маневр вблизи них может сообщить нашему межзвездному зонду дополнительную скорость.

Эта идея пришла в голову автору статьи — астроному по профессии — несколько лет назад, при изучении движения звезд Галактики. Известно, что скорости движения звезд в среднем составляют 40—60 км/с и доходят до 250—300 км/с, что намного больше, чем у планет. Каждая встреча автоматического зонда со звездой при соответствующем подборе траектории сближения увеличит скорость аппарата на несколько десятков, а то и сотен километров в секунду. Чем больше таких встреч, тем выше скорость полета. Особенно эффективными ускорителями служат массивные компактные светила — белые карлики и нейтронные звезды.
Разумеется, у каждого изобретения есть слабые стороны. «Межзвездный слалом» требует, чтобы по мере набора скорости аппарат пролетал все ближе и ближе к поверхности очередной встречной звезды, иначе не получится крутого разворота и набора скорости. Если использовать для разгона только белые карлики и старые нейтронные звезды, которых довольно много в окрестности Солнца, то проблем с перегревом зонда не будет, поскольку светят эти звезды слабо. Возникает иная проблема — неоднородность гравитационного поля вблизи звезды, известная на Земле по морским приливам. Неоднородные поля Луны и Солнца лишь немного деформируют поверхность земных морей, но поле нейтронной звезды легко разорвет космический аппарат размером больше футбольного мяча. Лишь маленький зонд способен пролететь рядом с такой звездой и не разрушиться. А поскольку использование электромагнитного ускорителя также требует маленьких и прочных зондов, то эти требования совпадают.

Итак, аппарат для межзвездных исследований должен быть размером с небольшой мяч, умный, прочный, долговечный и дешевый. Еще недавно эти качества казались несовместимыми. Но в наши дни, когда из кармана можно вынуть сотовый телефон, уже нет сомнений, что изготовить такие межзвездные разведчики скоро станет несложно. Современная электроника и микромеханика делают информационные приборы чрезвычайно компактными и энергосберегающими. Сейчас микродатчики и микропроцессоры можно обнаружить в самых неожиданных местах: в телефонной трубке и записной книжке, в авторучке и поздравительной открытке. Микрохирургия близка к тому, чтобы изготавливать диагностические и лечебные аппараты, свободно плавающие в сосудах человеческого организма. Собственно говоря, прототипы необходимых нам «звездных паучков» уже созданы: известный американский конструктор микророботов М. Тилден (М. Tilden) сконструировал простейшие спутники Земли размером с монету и стоимостью 20 долларов. Сейчас он работает над более сложными аппаратами.

Эффект Ярковского

При разработке этой идеи несколько лет оставалась нерешенной проблема коррекции траектории зонда, не имеющего собственных двигателей. Подлетая к очередной звезде, зонд должен чуть-чуть подправить свою траекторию, чтобы в результате гравитационного маневра уйти к следующей «перспективной» звезде. Решить эту проблему помогло случайное знакомство с почти забытой книгой самобытного российского исследователя Ивана Осиповича Ярковского (1844—1902), о котором следует сказать несколько слов.

Талантливый инженер и ученый, Иван Ярковский, к сожалению, забыт на родине. А его не столь уж долгая жизнь была весьма интересной и насыщенной. Родился он в местечке Освей Витебской губернии в семье врача, но очень рано лишился отца и был отдан «на казенный кошт» в Московский сиротский кадетский корпус. Там он проявил способности к математике и механике, а также изобретательский талант: сконструировал оригинальный дальномер, за что был награжден золотыми часами из рук великого князя Михаила Николаевича.

Выйдя в отставку прапорщиком артиллерии, он шесть лет прослужил на Кавказе, затем окончил петербургский Технологический институт, защитил диссертацию по водоснабжению и работал как инженер-путеец на разных дорогах страны. Сделав немало полезных изобретений по технической части, Ярковский быстро выдвинулся в активные члены Императорского русского технического общества, где руководил секцией механики и занимался вопросами воздухоплавания. Но его глубинный интерес лежал в области фундаментальной науки: он строил теорию светоносного эфира и гравитации. В те годы над этой проблемой работали лучшие физики, включая Эйнштейна. Оригиналъная механическая теория Ярковского не нашла подтверждения, но один предсказанный им астрономический эффект стал полезным инструментом науки.
Сущность эффекта Ярковского проста: речь идет о воздействии солнечного света на движение небольшого космического тела, скажем астероида. Освещенная солнечным светом поверхность астероида нагревается и, пытаясь охладиться, излучает в космос инфракрасные лучи. Поток тепла действует как реактивный двигатель: он слегка толкает астероид в сторону, противоположную направлению излучения.

А теперь вспомним, что все астероиды вращаются вокруг оси, подобно планетам. На поверхности астероидов тоже есть смена дня и ночи. Когда вращение тела уносит нагретую за день поверхность астероида в ночную тень, накопленное тепло излучается «вбок», действуя как разгонный или тормозной реактивный двигатель. Если вращение отклоняет нагретую поверхность астероида вперед по курсу, то эффект Ярковского тормозит движение тела, и оно, опускаясь по орбите, приближается к Солнцу. Если же теплая поверхность за счет вращения разворачивается назад, то лучевой импульс подгоняет движение тела и поднимает его орбиту, удаляя тело от Солнца.
В последние годы возрос интерес к движению астероидов, пересекающих орбиту Земли. Для точного прогноза возможного столкновения учет эффекта Ярковского оказался обязательным. А еще этот эффект можно использовать для межзвездного маневрирования. Наш микрозонд в результате воздействия падающего на него излучения окружающих звезд может корректировать свою траекторию в процессе перелета от звезды к звезде.

Невидимые разведчики космоса

Таким образом, вырисовывается стратегия межзвездных исследований. На поток ставится производство маленьких однотипных аппаратов, объединяющих в себе компьютер (содержащий в памяти все энциклопедии Земли на случай встречи с братьями по разуму), лабораторию для исследования звезд и планет, а также рацию для связи с Землей. Обычными ракетами эти крохотные зонды доставляются на орбиту, откуда электромагнитная пушка выстреливает их в направлении ближайших звезд. Далее они уже сами увеличивают свою скорость, перелетая от звезды к звезде, и проводят исследования.
Имея небольшой размер, микрозонды смогут вторгаться в области относительно плотной межзвездной и межпланетной материи, сближаться с компактными и массивными объектами. Кстати, малая стоимость зондов позволяет довольно просто решить проблему их связи с Землей. Одинокому зонду трудно решить эту задачу в силу небольшой мощности его передатчика. Но, запуская по одной траектории последовательно несколько аппаратов, мы на первом этапе обеспечиваем радиорелейную связь (то есть передачу по цепочке). Позже, когда микрозонды заполнят околосолнечную область Галактики, легко будет организовать сетевую связь, этакий космический интернет.
Стратегия исследования Галактики с помощью микрозондов составляет предмет отдельного исследования. При этом необходимо рассмотреть методы осуществления оптической связи как наиболее предпочтительной на дальних расстояниях, а также способы возвращения зондов в район старта. Кстати, если подобные зонды, запущенные из других планетных систем, время от времени проходят через Солнечную систему, то обнаружить их сейчас нет никакой возможности. Вероятно, в таком же положении окажется большинство наших братьев по разуму, поскольку им тоже будет сложно обнаружить наши зонды. Поэтому подобный способ «микрозондажа» Галактики представляется наиболее безопасным и ответственным по отношению к человечеству. Такая стратегия чрезвычайно привлекательна для цивилизаций, делающих первые шаги на пути колонизации космоса.
В заключение должен заметить, что описанная здесь идея межзвездных путешествий отнюдь не сумасшедшая. Научные статьи о ней, содержащие детальные расчеты, были благосклонно приняты коллегами, так что дело теперь за инженерами, способными воплотить идею в реальных устройствах.

Другие материалы рубрики


  • Теория эволюции звезд основана на диаграмме «спектр-светимость». Спектр звезды связан с температурой ее поверхностных слоев, светимость — это количество световой энергии, излучаемой звездой в единицу времени. По оси абсцисс откладывается последовательность спектральных классов, по оси ординат — светимость. Звезды Галактики изображаются на диаграмме точками. Точки могли бы расположиться как попало, могли бы сгуститься к одной линии. Но они сгущаются к нескольким линиям и областям, из которых выделяются пять. Им соответствуют группы звезд: звезды главной последовательности, субкарлики, красные гиганты, сверхгиганты, белые карлики. Сопоставляя диаграммы «спектр-светимость», составленные для различных звездных скоплений, можно с уверенностью утверждать, что звезды главной последовательности на определенном этапе эволюции превращаются в красные гиганты. Из диаграмм также видно, как это происходит: температура звезды начинает уменьшаться, размеры и светимость, наоборот, увеличиваются. Через некоторое время температура опять начинает расти. Скорость эволюции определяется начальной массой звезды.

    • Страницы
    • 1
    • 2
    • 3


  • В своей ранней молодости Марс, похоже, подвергся удару, навсегда изменившему облик планеты. Объект размером с Плутон врезался в планету с севера, разделив ее на две половины — низкий север и высокий юг. Крупнейший кратер Солнечной системы сохранился до наших дней.



  • ...Несмотря на то, что идея коллапса кажется простой (при сжатии ядра выделяется энергия гравитационной связи, за счет которой выбрасываются внешние слои вещества), трудно понять процесс в деталях. В конце жизни у звезды с массой более 10 масс Солнца образуется слоеная структура, с глубиной появляются слои все более тяжелых элементов.
    Ядро состоит в основном из железа, а равновесие звезды поддерживается квантовым отталкиванием электронов.
    Но в конце концов масса звезды подавляет электроны, которые вжимаются в атомные ядра, где начинают реагировать с протонами и образовывать нейтроны и электронные нейтрино. В свою очередь, нейтроны и оставшиеся протоны прижимаются друг к другу все сильнее, пока их собственная сила отталкивания не начнет действовать и не остановит коллапс.

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • ...Пока ваш звездолет выбирается из гравитационной ловушки Гаргантюа, вы строите планы возвращения домой. К тому моменту, когда вы достигнете Млечного Пути, Земля станет на 2,4 млрд. лет старше, чем во время вашего старта. Изменения в человеческом обществе будут настолько велики, что вы не испытываете особого желания возвращаться на Землю. Вместо этого вы и команда звездолета решаете освоить пространство вокруг какой-нибудь подходящей вращающейся черной дыры. Ведь именно энергия вращения дыры в квазаре 8C 2975 позволяет квазару «проявить себя» во Вселенной, поэтому энергия вращения дыры меньших размеров может стать источником энергии для человеческой цивилизации.

    • Страницы
    • 1
    • 2
    • 3


  • Этот взрыв потряс не только часть Вселенной, но и земную астрономию! Громадная звезда вдруг стала сверхновой, и ее разорвало на куски с таким шиком, что даже бывалые астрономы заявили, что никогда такого не видали. А ведь должна была вести себя тихо-тихо. Ученые подозревают, что такое разрушительное событие может в любой момент повториться у нас прямо под боком. Возможно, даже завтра. Или прямо сейчас.



  • Был ли Большой взрыв началом времени или Вселенная существовала и до него? Лет десять назад такой вопрос казался нелепым. В размышлениях о том, что было до Большого взрыва, космологи видели не больше смысла, чем в поисках пути, идущего от Северного полюса на север. Но развитие теоретической физики и, в частности, появление теории струн заставило ученых снова задуматься о предначальной эпохе.
    Вопрос о начале начал занимать философов и богословов с давних времен. Он переплетается с множеством фундаментальных проблем, нашедших свое отражение в знаменитой картине Поля Гогена «D’ou venons-nous? Que sommes-nous? Ou allons-nous?» («Откуда мы пришли? Кто мы такие? Куда мы идем?»). Полотно изображает извечный цикл: рождение, жизнь и смерть — происхождение, идентификация и предназначение каждого индивидуума. Пытаясь разобраться в своем происхождении, мы возводим свою родословную к минувшим поколениям, ранним формам жизни и прото-жизни, химическим элементам, возникшим в молодой Вселенной, и, наконец, к аморфной энергии, некогда заполнявшей пространство. Уходит ли наше фамильное древо корнями в бесконечность или космос так же не вечен, как и мы?

    • Страницы
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6


  • О спонтанном возникновении вещества из пустого пространства говорят как о рождении “из ничего”, которое близко по духу рождению ex nihilo в христианской доктрине. Для физики пустое пространство совсем не “ничего”, а весьма существенная часть Вселенной, а мысль о рождении самого пространства может показаться вообще странной. Однако в каком-то смысле это все время происходит вокруг нас. Расширение Вселенной есть не что иное, как непрерывное “разбухание” пространства. С каждым днем доступная современным телескопам область Вселенной возрастает на 1018 кубических световых лет. Здесь полезна аналогия с резиной. Если упругий резиновый жгут вытянуть, его “становится больше”. Пространство напоминает суперэластик тем, что оно, насколько известно физикам, может неограниченно долго растягиваться не разрываясь. Растяжение и искривление пространства напоминает деформацию упругого тела тем, что “движение” пространства происходит по законам механики точно так же, как и движение обычного вещества. В данном случае это законы гравитации. Квантовая теория в равной мере применима как к веществу, так и к пространству и к времени.
    Действительно, благодаря собственной физической природе Вселенная возбуждает в себе всю энергию, необходимую для “создания” материи — это есть космический бутстрэп (bootstrap — в переводе “зашнуровка”, в переносном смысле — отсутствие иерархии в системе элементарных частиц).



  • Галактика, в которой мы живем, — Млечный Путь — настоящий исполин по галактическим меркам. Среди галактик местной группы лишь Туманность Андромеды может тягаться с нашим домом по количеству звезд, размерам и массе. Однако сферы влияния гигантов давно поделены, и нашу галактику окружают десятки, а может, и сотни галактик-спутников.
    Сейчас известны по крайней мере 23 спутника нашей галактики. Некоторые из них светятся, как миллиарды солнц, и жителям Южного полушария нашей планеты отлично знакомы Магеллановы облака — крупнейшие спутники нашей Галактики, не заметить которые на ночном небе невозможно даже невооруженным глазом.



  • Уже очень скоро сверхмассивную черную дыру в центре нашей Галактики украсит красочный венец из молодых и ярких звезд. Следы метилового спирта в огромном газовом кольце вокруг нее означают, что в нем уже формируются массивные звезды. Раньше астрономы думали, что черная дыра образованию звезд может помешать.
    В центрах большинства галактик, особенно крупных, находятся сверхмассивные черные дыры, весящие миллионы и даже миллиарды солнечных масс — куда больше тех, что возникают в конце эволюции звезд. Судя по всему, эти объекты зародились еще в первые сотни миллионов лет после Большого взрыва, породившего нашу Вселенную, и с тех пор лишь росли, постепенно нагуливая массу и освещая свои вселенские окрестности ярким светом активности галактического ядра

    • Страницы
    • 1
    • 2


  • ...Уходить от Солнца на еще большее расстояние, по подсчетам швейцарского астрофизика, нет смысла. Потому что в стадии красного гиганта Солнце пробудет всего несколько миллионов лет, а затем станет снова быстро сжиматься, превратится в белого карлика и начнет деградировать как источник энергии. И тогда Земле, чтобы получать достаточное количество тепла и света, понадобится орбита меньшая, чем сейчас у Меркурия. Но при таком приближении к светилу силы притяжения довольно скоро остановят вращение Земли вокруг ее оси. Планета будет повернута к Солнцу всегда одной стороной. Значит, жизнь на Земле быстро погибнет: на ночной стороне — от тьмы и холода, а на освещенной — от жары и губительного для всего живого ультрафиолетового и рентгеновского излучения, идущего от белого карлика.

    • Страницы
    • 1
    • 2
    • 3