Геология Марса. Часть 2

Ср, 12/24/2014 - 19:47

Рис. 13. Склон небольшого кратера в том же районе (кратер Ньютона), что и на рис. 10, с многочисленными извилистыми оврагами и осыпями сыпучего материала на дне. (MGS MOC Release No. MOC2-317. NASA/JPL/MSSS) Извилистые овраги свидетельствуют, вероятно, о каменистом склоне

Рис. 14. Тормозные ракетные двигатели аппарата «Феникс» (фото 2008 года) сдули тонкий слой песка и пыли и обнажили сплошной слой льда

Рис. 15. Аппарат «Марс Экспресс» в 2005 году передал изображение обширной равнины, которая могла быть ледяной поверхностью древнего океана. Плоские блоки неправильной формы, покрытые песком и пылью, выглядят так же, как льдины в антарктических океанах Земли

Рис. 16. Структура северной полярной шапки включает слои льда и пыли. Диаметр шапки достигает 500 км

Рис. 17. Рождение нового потока на склоне кратера. Фото MGS

Рис. 18. Склон кратера с протоками (39°8, 166°Т^).
В нижней части снимка находится бассейн, подобный чашам на рис. 22 и 23, но значительно большего размера

Рис. 19. Протяженность следа потока на склоне достигает 6 км. Для земных грунтов потемнение соответствует увлажнению. Можно предположить, что темный след относится к более позднему источнику

Рис. 20. Наряду со следами свежих и старых потоков два коротких темных потока снова возникли у начала светлых (более старых) образований

Рис. 21. Возвышенность, из-под поверхности которой радиально отходят следы потоков разного возраста

Рис. 22. На горном склоне в природном заповеднике Памуккале (Турция) вода термальных источников минерализуется, образуя заполненные водой чаши. Фото автора

Рис. 23. Бассейн на дне небольшого кратера, расположенного внутри кратера Ньютона. Размер видимой части бассейна достигает 3,4 км

Рис. 24. Ледяная линза на дне 35-км кратера, расположенного в полярной зоне. Вал кратера круглый год защищает лед от прямых солнечных лучей



Однако сторонники потоков воды провели всестороннее исследование гипотезы о жидкой углекислоте и других средах. Были детально рассмотрены практически все ее аспекты и сделаны убедительные выводы. Например, в аккуратной работе Стьюарта и Ниммо, вышедшей в 2002 году, результаты сформулированы следующим образом: «Мы нашли, что ни конденсированный CO2, ни клатраты CO2 не могут быть накоплены в коре Марса в достаточных количествах... Таким образом, мы заключаем, что овраги не могут быть образованы жидким CO2. В свете этих результатов потоки жидкой воды остаются предпочтительным механизмом формирования свежих протоков на поверхности».

Изображение склона с одиночными нитевидными «исчезающими» оврагами приведено на рис. 12 (НиТ №4, 2012). Узкие овраги или протоки довольно часто встречаются в полосе марсианских широт от 30°N до 70°S. Они действительно похожи на склоновые русла земных рек и не перекрываются более поздними образованиями (например, песчаными дюнами). Ширина (и, вероятно, глубина) оврагов близка к 10-20 м, а протяженность составляет от сотен метров до километров. Сотни снимков, сделанных с орбитальных аппаратов, показали, что источники следов грунтовых вод находятся на крутых склонах долин и кратеров, на глубине от 150 до 500 м ниже уровня окружающей поверхности. По-видимому, именно на этих глубинах в некоторых районах происходит таяние грунтовых льдов и вода выходит на склоны. На рис. 13 представлен еще один вид района с подобными оврагами. В отличие от рис. 10 здесь овраги извилистые. На Земле это значило бы, что на пути потока расположены крупные глыбы, а склон пологий. Ширина оврагов — от единиц метров до 10-20 м, они тоже не расширяются, а сужаются вниз по склону и исчезают.

Именно потоки (воды или какой-то другой жидкости) легко могли бы образовать такие промоины, но как объяснить их странный вид? Почему следы потоков теряются на склоне? Ускорение свободного падения на Марсе почти втрое меньше земного, но это, конечно, не значит, что вода течет вверх. На первый взгляд такое сужение оврагов кажется парадоксальным, если они образованы потоком. Но для Марса можно предложить простое объяснение этого парадокса: низкие температуры. Если грунтовая вода действительно образовала ключ и поток вышел на поверхность, устремившись вниз по морозному склону, то в условиях Марса размеры развивающейся промоины будут зависеть, прежде всего, от температуры поверхности и температуры потока. Если температура поверхностного слоя днем составляет, в зависимости от широты на Марсе, от -60 до -10°С или ниже, поток, спускаясь по склону, должен постепенно и впитываться в сухой морозный грунт, и замерзать. Образуется ложе канала из промерзшего грунта, по которому оставшаяся часть потока устремляется дальше, впитываясь, наращивая промерзшее ложе, охлаждаясь и продолжая замерзать. Поэтому, в отличие от земных склоновых рек, потоки на Марсе сужаются. При переходе воды с температурой 0°С в фазу льда выделяется 80 ккал/кг. Теплоемкость марсианского грунта невелика, поэтому промерзшее ложе потока может получиться достаточно толстым, если ключ существует достаточно долго. Как ведет себя грунт Марса при увлажнении и сколько при этом поглощается тепла, точно неизвестно, но баланс отдаваемого тепла должен включать его потери в образующемся ледяном ложе канала, а также более медленные излучение и поглощение атмосферой. Температура истекающей воды также неизвестна, но высокой она быть не может, вероятно, около 10°С.

Сужающиеся по склону овраги известны и на Земле в районах пустынь и связаны с непосредственным поглощением (впитыванием) воды сухим теплым грунтом, что не имеет ничего общего с мгновенным образованием тонкого ледяного ложа потока на Марсе. Более близким аналогом могут быть потоки от гейзеров, бьющих в кальдере вулкана Эребус в Антарктиде.

Часто утверждается, что жидкая вода на поверхности Марса немедленно испаряется. Это недоразумение: роль испарения пренебрежимо мала, и ее нетрудно оценить. Пусть атмосферное давление в данном районе 8 мбар, тогда температура кипения воды, согласно диаграмме на рис. 5, составляет 4°С. При температуре воды в ключе, например, 10°С вода в потоке будет кипеть, постепенно уменьшая свое теплосодержание и остывая. Когда температура упадет до 4°С (или до 0°С при давлении 6,1 мбар), каждый килограмм воды потеряет 6 ккал и кипение прекратится. Чтобы найти, какая доля потока испарится с понижением его температуры до 4°С, следует эти 6 ккал разделить на теплоту парообразования (в земных условиях это 540 ккал/кг, на Марсе незначительно больше). Расчет показывает, что в пар превратится всего 1,1%, то есть сколько-нибудь заметная часть истекающей воды испариться не может, для этого негде взять необходимую теплоту парообразования. Реальные процессы могут быть сложнее, так как на крутых склонах поток несет с собой значительные массы грунта, что уменьшает его теплосодержание.

Когда дневная температура грунта становится положительной, как это наблюдалось с аппарата «Пасфайндер», потоки способны распространяться на большие расстояния, но их обильность также должна уменьшаться с расстоянием из-за расхода воды на увлажнение песчаного грунта. Заметную роль в протяженности потоков может играть соленость грунтовой воды Марса, понижающая точку замерзания.

Источником жидкой воды может быть только таяние подпочвенного льда (или вечной мерзлоты). Глубина залегания подпочвенного льда оценивается различно, в среднем от сотни метров до километра, а минимальная оценка глубины — всего несколько сантиметров. Так, в арктической зоне посадки аппарата «Феникс» лед оказался сразу под слоем пыли (рис. 14). Аппарат исследовал реголит на небольшой глубине. При посадке аппарата струи газа из тормозных двигателей (конусы вверху) сдули слой пыли. Под ее тонким слоем находится значительная масса льда, который, в отличие ото льдов низких широт, здесь сохраняется очень долго. Что же касается поясов экваториальных и умеренных широт, выход воды (и, возможно, водяного пара) из глубоких слоев тающего льда на поверхность неизбежен — куда им еще деваться. По результатам исследований на аппарате MGS было установлено, что в некоторых районах на глубине менее 500 м есть жидкая вода. На склонах кратеров на рис. 6 и 10 ясно виден выделяющийся чем-то слой глубиной 100-500 м. Можно предположить, что он отличается именно присутствием льда и воды.

В представлениях о Марсе как о «сухой, мертвой планете» произошел перелом. Как всегда, появление новых измерительных приборов приводит к ревизии прежних сведений. Но уместно отметить: еще в конце 1970-х исследователи предполагали, что на Марсе должны существовать частично или полностью промерзшие, скрытые слоем песка и пыли озера. На одном из снимков аппарата «Марс Экспресс» видна обширная гладкая равнина (рис. 15). Метеоритные кратеры на ее поверхности немногочисленны, что указывает на сравнительно недавнее появление равнины. Верхний окрашенный слой — конечно, песок и пыль, но под ними просматриваются плоские блоки протяженностью в десятки и даже в сотню километров. Из сравнения с видом ледовых полей Антарктики был сделан предположительный вывод, что это поверхность замерзшего моря или небольшого океана, возникших в эпоху более мягкого климата Марса. Метеоритные кратеры неглубоки и своей правильной формой отличаются от других ударных кратеров, позволяя предположить, что они образовались в толще льда.

Как уже отмечалось, километровые слои льда, воды и пыли образуют северную полярную шапку Марса (рис. 16). В отличие от южной, примесей льда CO2 здесь практически нет. Из-за низких температур таяния льда ожидать не приходится, лед сублимирует (испаряется, минуя жидкую фазу). Воды в северной полярной шапке сосредоточено много, но все же намного меньше, чем в подпочвенных льдах. На границе шапки при таянии возникают образования, природа которых не вполне понятна. В появлении жидкой воды полярные шапки, по-видимому, какой-либо роли не играют.

Вода на Марсе сегодня

Появляется все больше доказательств того, что природа протяженных темных или светлых вытянутых образований на склонах кратеров и возвышенностей Марса связана с ныне существующими источниками жидкой воды, ключами грунтовых вод, возникающими на склонах, и потоками воды, а вовсе не с перемещением больших масс сухого песка (пыли) или с камнепадами. Полученные с орбитальных аппаратов изображения с разрешением до единиц метров позволяют увидеть такие ключи в действии. В верхней части рис. 17 сравниваются два снимка склона кратера, сделанные с интервалом в шесть лет. За это время на склоне появился новый объект, очень похожий на поток или его след, длиной несколько сотен метров. Как будет показано ниже, часто потоки возникают повторно и движутся по старому или новому пути. Интересно, что в некоторых случаях они не обрываются, а заканчиваются чем-то вроде запруды.

На рис. 18 представлен склон кратера, богатого склоновыми протоками (39°S, 166°W). В нижней части снимка находится чаша, или бассейн, изрезанной формы. Внешняя граница бассейна выделяется светлой окантовкой. Поверхность бассейна по сравнению с примыкающей поверхностью гладкая даже при большом увеличении; возможно, это лед. В верхней (на снимке) части чаши видны два или три следа, соответствующие многократному понижению уровня поверхности. Сток воды через края бассейна образовал второй, внешний контур (в нижней части снимка). Два таких же, но меньших по размерам контура можно заметить в левой части снимка. Источников жидкости, пополняющих бассейн, видно несколько. Вероятно, главный источник находится справа над чашей. Это вытянутое образование с шестью направленными вниз отростками, и, по-видимому, вдоль них стекает вода. Более мелкие структуры того же типа видны слева над бассейном и, вероятно, связаны с наиболее широким протоком вдоль склона. Форма промоин на рис. 18, соответствующая крутому склону, указывает, что поток несет с собой значительное количество грунта. Горизонтальная ось снимка — около 1500 м. Длина бассейна — около 600 м, а площадь — около 0,3 км2. Никакие песчаные запруды на Марсе не смогли бы удержать столь большие массы воды, даже с учетом втрое более низкой силы тяжести на планете. Но если грунт очень холодный, поступающая вода, впитываясь в морозный грунт, способна быстро создать запруды, чаши из льда и промерзшего грунта, обладающие определенной прочностью. По существу, это тот же механизм, о котором говорилось выше и который объясняет сужение протоков вдоль склона.

Возраст образований, показанных на рис. 18, не может быть большим. Вполне вероятно, что источники и бассейн действуют в наши дни. На это указывают чистая, насколько можно судить по снимку (без отложений пыли), кромка бассейна, примыкающий к нему второй контур и четкие нитевидные протоки на склонах. Протоки имеют разветвляющуюся форму, но направлены вверх, а не вниз по склону. Это свойство склоновых оврагов на Марсе уже рассматривалось выше; оно связано с быстрым вымерзанием потока и с частичным просачиванием воды в сухой песчаный грунт. Ветвящиеся отростки представляют собой не притоки, а оттоки от основного русла.

Интересно оценить возраст нитевидных оврагов; он тоже очень большим быть не может хотя бы из-за массивных обрушений песка, которые хорошо видны внизу рис. 10 и которые неминуемо засыпали бы старые овраги. Разрушение оврагов происходит и под действием постоянной ветровой эрозии.

Хорошую возможность оценить возраст источников предоставляют рис. 19-21. На рис. 19 полная протяженность расположенного на склоне следа потока достигает 6 км. Можно предположить, что более темный оттенок соответствует увлажнению; во всяком случае, темный оттенок характерен для земных увлажненных грунтов. Источников на снимке два, на расстоянии примерно 150 м один от другого. Каждый из них, в пределах разрешения снимка, — «точечный». Дебет каждого из источников должен быть достаточно большим, чтобы оставить столь протяженный след или создать глубокие овраги. На снимке видно, что следы имеют разную плотность; более плотный и узкий возникает ниже и проходит вдоль менее плотного, но более широкого следа. Напрашивается вывод, что плотный след — более поздний и что он возник, когда верхний источник уже иссяк. Можно заметить, что след на рис. 19 отличается от рис. 10 и 12 тем, что глубокого оврага (промоины) здесь, по-видимому, нет. Возможно, это молодой источник, а промоина формируется, как и в случае земных горных рек, за длительное время.

Можно очень приближенно рассчитать объем вытекшей воды, который для пейзажа на рис. 19 составил не менее 300 м3. Расчет осложняется тем обстоятельством, что продолжительность работы отдельного источника неизвестна, а глубина промерзшего ложа должна постепенно нарастать за счет теплообмена с потоком. Поэтому оценка (300 м3) опирается главным образом на проделанный несложный модельный эксперимент и может быть очень неточной. На возможную связь плотности (оттенка) следа с его возрастом указывает и рис. 20. Наряду с длинным правильной формы следом, возникающим, как и на рис. 19, из «точечного» источника на верхней кромке вала, на склоне видны многочисленные малоконтрастные полосы той же природы — по-видимому, следы пересохших потоков. Интересные образования видны в левой части снимка: два коротких темных потока снова возникли у начала светлых (более старых) образований. Таким образом, источники многократно возникают на тех же самых местах.

В некоторых случаях темные потоки возникают вблизи верхушки изолированного холма, как на рис. 21, где возвышающаяся гора украшена многочисленными радиально направленными следами потоков разного возраста, в том числе и возникающими повторно. Вероятно, это один из лучших примеров быстрого таяния значительной изолированной массы подпочвенного льда или даже целой ледяной горы.

Как долго могут сохраняться покрытые реголитом ледяные поверхности, все еще неясно. Какой-то ответ могут дать бассейны, подобные показанному на рис. 18. С одной стороны, слои пыли настолько хорошо изолируют грунтовый лед, что он может сохраняться почти неограниченно долго, с другой — имеется эндогенное (внутреннее) тепло недр, которое все-таки постепенно лед выплавляет. Количество выделяемого тепла в разных районах различно, так как распределение в коре планеты радиоактивных элементов — урана, тория и калия-40, распад которых создает значительную его часть, неравномерно.

У марсианских бассейнов есть аналоги на Земле, особые природные образования, которые потоки порой образуют на земных горных склонах. На рис. 22 показаны такие удивительные структуры в природном заповеднике Памуккале (Турция). Здесь теплая вода многочисленных термальных источников на горном склоне (рис. 22а), обогащенная кальциевыми гидросолями, минерализуется и создает расположенные каскадом чаши, заполненные водой (рис. 22b). Масштаб чаш иллюстрирует рис. 22с. Постепенно вода отступает, образуя горизонтальные кромки на поверхности чаш. Когда источник иссякает, исчезает и вода в чашах. Пустые чаши окаймляют плато изрезанной белой цепью.
Пока никаких указаний на минеральные источники на Марсе нет. Но чаши Памуккале — это прямая морфологическая аналогия с гораздо большим бассейном изрезанной формы на рис. 18. Внешняя граница бассейна, похожая на края чаши Памуккале, выделяется светлой окантовкой, вероятно, ледяной кромкой.

Еще один такой же бассейн, но значительно больших размеров, можно видеть на рис. 23. Он находится на дне небольшого кратера, расположенного внутри кратера Ньютона. Горизонтальная ось снимка составляет 7 км, а размер видимого участка бассейна достигает 3,4 км. На крутом склоне видны многочисленные нитевидные следы потоков, возникающих в стенке вала кратера на глубине примерно 0,5 км под уровнем поверхности. Потоки состоят, по-видимому, из воды и полужидкого грунта. В отличие от рис. 13, следы здесь прямые, что, наверное, указывает на большую крутизну склона. Наиболее широкий проток расположен правее центра, под нависающим «языком», который, возможно, состоит из льда. Дно кратера выглядит затуманенным; не исключено, что это действительно испарения над открытой частью водной поверхности бассейна. Поверхность бассейна не такая гладкая, как на рис. 18. Связано ли это с возрастом бассейна, неизвестно. Судя по его площади, составляющей несколько квадратных километров, приток жидкости здесь значительно превышает ее приток к бассейну на рис. 18.

На снимках поверхность бассейнов по цвету не отличается от окружающего рельефа, поэтому предполагается, что вся ледяная поверхность покрыта песком и пылью. Но есть одно исключение. В 70° к северу от экватора, на дне 35-километрового кратера, находится ледяное озеро диаметром 10 км и глубиной до 200 м (рис. 24). Вал кратера высотой около 300 м круглый год надежно заслоняет лед от прямых солнечных лучей. Только вот почему он здесь чист от пыли?

Возраст бассейнов не может быть большим. Если бы ключи на склонах действовали постоянно, вместо чаш или бассейнов наблюдалось бы ровное дно кратера, покрытое твердой (или жидкой) средой. По-видимому, снимки указывают на современные явления, которые возникают, развиваются и исчезают, хотя повторное появление следов на тех же местах может быть доказательством устойчивых и длительных процессов.

Заключение

Можно отметить интересное совпадение. Более 20 лет назад было высказано предположение, что марсианские полюса однажды переместились так, что льды прежних полярных шапок оказались на экваторе, где сохранились под слоями грунта и отложениями вулканического пепла. Почти все обнаруженные следы текущей воды сосредоточены в восточной части Равнины Амазония и в восточной части Земли Аравия — диаметрально противоположных экваториальных районах Марса. Вместе с тем вид поверхности в другом районе, где работал аппарат «Опортьюнити», по мнению многих специалистов, свидетельствует об осадочных процессах в древнем водохранилище, что возвращает нас к нерешенному вопросу об эволюции климата древнего Марса и странному отсутствию следов жизни на нем. Но об этом надо говорить отдельно.

Марс — сухая и морозная планета, но в некоторых его районах присутствуют действующие источники и, по-видимому, устойчивые каналы грунтовых вод. Наличие жидкой воды может играть важную роль в современных гидрологических циклах на планете. Если для поиска жизни на планете необходимо найти там воду, то эта задача, по-видимому, решена. Остается обнаружить на Марсе жизнь.

Другие материалы рубрики


  • ...Теперь вы должны быть предельно внимательны. Следующие несколько секунд окажутся решающими, поэтому вы включаете высокоскоростную регистрирующую систему для детальной записи всех приходящих сведений. Через 61 с R3D3 сообщает, что все системы пока функционируют нормально, горизонт - на расстоянии 8000 км и приближается со скоростью 15 тыс. км/с. Проходит 61,6 с. Еще все в порядке, до горизонта осталось 2000 км, скорость - 30 тыс. км/с (или 0,1 скорости света, так что цвет излучения начинает меняться все заметнее). А затем, в течение следующей 0,1 с вы с изумлением замечаете, что излучение из зеленого становится красным, инфракрасным, микроволновым, затем приходят радиоволны и наконец все исчезает. Через 61,7 с все кончено - лазерный луч пропал. R3D3 достиг скорости света и исчез за горизонтом.

    • Страницы
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6


  • В кинокомедии «Карнавальная ночь» один из персонажей — лектор — сообщает: «Есть ли жизнь на Марсе, нет ли жизни на Марсе, науке не известно». С тех пор прошло почти полвека, но это утверждение справедливо и сегодня. Однако не менее справедливо и другое: «Где есть вода — там есть и жизнь». Сегодня с большой долей уверенности можно сказать: вода на Марсе есть. Дело за малым — отыскать там жизнь.


  • Юпитер называют планетой загадок. В статье высказывается гипотеза о причинах феномена «горячих теней» — наиболее таинственного и малоисследованного процесса, наблюдаемого в атмосфере гигантской планеты.

    • Страницы
    • 1
    • 2
    • 3


  • Немного найдется произведений, передающих красоту космических объектов, называемых планетарными туманностями. Освещенные изнутри родительской звездой, расцвеченные флуоресцирующими атомами и ионами на фоне космической черноты, газовые структуры кажутся живыми. Ученые дали им прозвища — Муравей, Морская Звезда, Кошачий Глаз...
    Термин «планетарные туманности» — представляющие собой размытые, похожие на облака объекты, видимые только в телескоп — придумал два столетия назад английский астроном Вильям Гершель (William Herschel), исследователь туманностей. Многие из них имеют округлую форму, которая напомнила ученому зеленоватый диск планеты Уран, им же и открытой. К тому же он полагал, что округлые туманности могут быть планетными системами, формирующимися вокруг молодых звезд. Термин прижился, несмотря на то, что действительность оказалась иной: туманности такого типа состоят из газа, сброшенного умирающими звездами. Примерно через 5 млрд. лет Солнце закончит свой космический век изящным выбросом планетарной туманности, что не вполне соответствует теории эволюции звезд — основе, на которой базируется наше понимание космоса. Если звезды рождаются, живут и умирают круглыми, то как же они создают вокруг себя структуры, которые мы видим на фотографиях «Хаббла», подобные Муравью, Морской Звезде или Кошачьему Глазу?

    • Страницы
    • 1
    • 2


  • Галактика, в которой мы живем, — Млечный Путь — настоящий исполин по галактическим меркам. Среди галактик местной группы лишь Туманность Андромеды может тягаться с нашим домом по количеству звезд, размерам и массе. Однако сферы влияния гигантов давно поделены, и нашу галактику окружают десятки, а может, и сотни галактик-спутников.
    Сейчас известны по крайней мере 23 спутника нашей галактики. Некоторые из них светятся, как миллиарды солнц, и жителям Южного полушария нашей планеты отлично знакомы Магеллановы облака — крупнейшие спутники нашей Галактики, не заметить которые на ночном небе невозможно даже невооруженным глазом.



  • За последнее время вблизи Земли пролетели несколько сравнительно крупных небесных тел. Сильную тревогу вызвало в 1936 г. прохождение астероида Адонис на расстоянии около 2 млн. км от Земли. А настоящую панику вызвал в 1937 г. астероид Гермес, имеющий диаметр ≈1,5 км, промчавшийся лишь на расстоянии 800 тыс. км от Земли (удвоенное расстояние до Луны). Позже (в 1992 г.) большой ажиотаж был связан с приближением к Земле малой планеты Тоутатис. Астероид диаметром около полукилометра пролетел мимо Земли 19 мая 1996 г. на расстоянии всего 450 тыс. км.

    • Страницы
    • 1
    • 2
    • 3


  • Прошло без малого сто лет с того момента, как были открыты космические лучи-потоки заряженных частиц, приходящих из глубин Вселенной. С тех пор сделано много открытий, связанных с космическими излучениями, но и загадок остается еще немало. Одна из них, возможно, наиболее интригующая: откуда берутся частицы с энергией более
    1020 эВ, то есть почти миллиард триллионов электрон-вольт, в миллион раз большей, чем будет получена в мощнейшем ускорителе — Большом адронном коллайдере (LHC)? Какие силы и поля разгоняют частицы до таких чудовищных
    энергий?

    • Страницы
    • 1
    • 2


  • Невиданный успех фильма «Аватар» о событиях на экзопланете Пандора на самом деле может быть не такой уж и фантастикой. По крайней мере, обнаружение новых планет в других звездных системах дает нам надежды на то, что мы на самом деле увидим причудливых инопланетных существ.
    Фантастика зачастую является таковой лишь для определенной эпохи, и с развитием научно-технического прогресса она становится реальностью. Вот и «Аватар» не зря был снят, точнее, смонтирован именно сейчас — ведь еще десять-пятнадцать лет назад подобное казалось уж больно нереальным. Примерно, как обнаружение живого динозавра.
    Современные астрономы уже не отрицают, что где-то там, в других галактиках или даже в нашем родном Млечном пути, есть жизнь. Завлабораторией астроинформатики Главной астрономической обсерватории НАН Украины Ирина Вавилова так и говорит: «Считаю, что она существует. В форме простейших организмов — так точно».

    • Страницы
    • 1
    • 2


  • Объект, отснятый близ звезды, сходной с Солнцем, не вписывается в привычные теории формирования планет. Специалистам еще предстоит разобраться с особенностями рождения этого странного мира, а широкая публика просто любуется снимками. Еще бы — не каждый день можно увидеть планету другой звезды, пусть и открыты их сотни.
    Звезда 1RXS J160929.1-210524 расположена примерно в 500 световых лет от нас. Она очень похожа на Солнце. Ее «вес» равен 85% массы нашей родной звезды. Правда, это светило значительно моложе нашего — 210524 возникла порядка пяти миллионов лет назад.
    Новая планета, по расчетам астрономов, обладает массой примерно в восемь масс Юпитера. И она не была бы такой уж уникальной, если б не два обстоятельства. Первое — она «вживую» запечатлена на снимках. А о втором скажем позже.
    Впервые астрономы непосредственно увидели объект планетарной массы на орбите вокруг звезды, такой как Солнце, и если подтвердится, что этот объект действительно гравитационно привязан к звезде, это будет крупным шагом вперед.
    Интригу, впрочем, принесло не яркое достижение наблюдательной астрономии как таковое, а выявленные параметры системы.



  • Вращаясь вокруг Солнца, инфракрасная обсерватория НАСА ищет следы молодых звезд и галактик, а также межзвездное пространство, в котором они образовались.
    Космический телескоп имеет очевидные преимущества в изучении инфракрасного теплового излучения, которое испускают объекты, слишком холодные, чтобы сиять в спектре видимого света. Атмосфера Земли - постоянная помеха для инфракрасных приборов, поскольку она не только впитывает слабые инфракрасные лучи из космоса, но и сама выделяет их огромное количество.
    В 1979 году НАСА представило инфракрасный космический телескоп SIRTF. Он не стал первым инфракрасным прибором на орбите, но долгое время оставался самым большим.