Городская ветроэнергетика. Часть 2

Чт, 05/15/2014 - 22:21

Рис. 4. Выработка электрической энергии генератором

Рис. 5. Увеличение выработки энергии при размещении генератора в башне

Рис. 6. Схема сравнительных испытаний в условиях полигона

Рис. 7. Выработка электрической энергии генераторами

Рис. 8. Относительное увеличение выработки энергии генератором в башне

Все новое — хорошо забытое старое

Принципиально вся ветроэнергетика построена на двух элементах: источнике энергии (ветер) и приемнике энергии (ветроустановка).
С первых шагов освоения энергии ветра и до нашего времени изобретатели занимались совершенствованием приемника энергии, а источник энергии (ветер) воспринимался ими как данное природой и не поддающееся управлению явление.
Во многом именно это обусловило проявление большинства недостатков, присущих современной ветроэнергетике.

Но в технической системе «ветер — ветроустановка» оба составляющих элемента одинаково значимы.
Только управление всеми элементами системы позволяет получить высокую эффективность ее работы.
Совершенствуя приемник энергии, человек откинул идею управления воздушным потоком прочь за ненадобностью. А зря! При современном уровне технического развития управление такими системами может быть организовано очень эффективно.

Но развитие ветроэнергетики пошло другим путем. В настоящее время практически все ветроустановки работают на одном принципе: снятия энергии со свободно набегающего воздушного потока.

Мы решили разработать принципиально новую техническую систему, которая позволила бы управлять как источником энергии, так и ее приемником. Таким образом, используя опыт и знания, накопленные человечеством в области строительства и эксплуатации ветроустановок, мы сможем значительно повысить их эффективность работы за счет управления параметрами воздушного потока (источника энергии).

Одним из результатов наших многолетних исследований стала ветроустановка башенного типа.

Она позволяет, с той или иной степенью эффективности, управлять всеми элементами системы «ветер — ветроустановка».

Ветроустановка башенного типа состоит из следующих основных элементов: аппарата сбора энергии, генератора, аппарата концентрации энергии и системы управления.
Аппарат сбора энергии выполнен в виде вертикального цилиндра, стенки которого собраны из профилированных поверхностей, образующих сквозные каналы, соединяющие внешнюю поверхность цилиндра с его внутренним вертикальным каналом (входные конфузорные каналы). Их задача — «захватить» набегающий воздушный поток, развернуть его вверх вдоль вертикальной оси установки и направить на лопасти генератора.

Генератор с лопастями размещен внутри аппарата концентрации энергии. Генератор преобразует кинетическую энергию воздушного потока в электрическую энергию.

Аппарат концентрации энергии конструктивно выполнен в виде вертикальной трубы, внутреннее сечение которой плавно уменьшается к центру, где и расположен генератор. Внутренний объем этой трубы является продолжением внутреннего вертикального канала аппарата сбора энергии. Такая конструкция данного узла позволяет повысить концентрацию кинетической энергии воздушного потока на лопастях генератора.

Система управления (на рисунке не показана) обеспечивает своевременное открытие конфузорных каналов башни со стороны набегания внешнего воздушного потока и закрытие всех остальных конфузорных каналов.

Чем принципиально отличается башенная конструкция от ветроустановок, преобразующих энергию свободно набегающего воздушного потока?
Она позволяет управлять энергией воздушного потока путем ее концентрации на лопастях генератора.

Отпадает необходимость в настройке лопастей ротора генератора «на ветер». Генератор, с вертикальной осью вращения, стационарно установлен в верхней части установки. Ветер сам «настраивается» на генератор благодаря конструкции аппарата сбора энергии.
Значительно повышается мощность воздушного потока, приходящая на лопасти ротора генератора. Конструкция аппарата концентрации энергии позволяет повышать скорость воздушного потока во внутреннем вертикальном канале установки и, соответственно, повышать его мощность.
Проведенные экспериментальные исследования моделей в аэродинамической трубе (рис. 3) показали увеличение выработки энергии генератором, установленным в башне, более чем в 4 раза, а для малых скоростей воздушного потока — более чем в 10 раз. (рис. 4 и 5).

Для подтверждения полученных лабораторных результатов была построена опытно-экспериментальная установка в масштабе 100:1. Схема испытаний — сравнительная (аналогична используемой в лаборатории), представлена на рис. 6.
В сравнительных испытаниях на полигоне мы использовали генераторы на постоянных магнитах СВ-1.2/30.

Основные характеристики:
Диаметр ветротурбины, м - 1.2
Стартовая скорость ветра, м/с - 3
Макс. эксплуатационная скорость ветра, м/с - 35
Номинальная частота вращения, об/мин - 800
Номинальное напряжение генератора, В - 12
Номинальная мощность генератора при 8 м/с - 150 Вт
Масса, кг - 9

Анализ полученных результатов показывает значительный рост эффективности работы генератора при его размещении в башне-концентраторе:
— стартовая скорость ветра в два раза ниже по сравнению с традиционными конструкциями;
— скорость ветра, при которой генератор работает в номинальном режиме — в 2 раза ниже;
— коэффициент использования установленной мощности может достигать значения 0,6…0,7 (получено расчетным путем);
— в 2–3 раза выше объем вырабатываемой энергии;
— объем выработанной энергии с единицы площади ометаемой поверхности, для всех диапазонов скоростей воздушного потока, вырос более чем в 5 раз, а в диапазоне низких скоростей — более чем в 10 раз.

Конструктивные особенности новой ветроустановки позволяют устранить многие недостатки, присущие ветроустановкам традиционной конструкции.
К таким недостаткам относятся шумы и вредные для человека излучения, которые могут возникать в процессе работы генератора башенной ветроустановки, не выходят за конструктивные габариты установки. Это достигается благодаря тому, что генератор с лопастями расположен внутри ее вертикального канала. Современные материалы позволяют эффективно гасить или поглощать все вредные шумовое и вибрационное излучения. По этой же причине генератор и лопасти башенной ветроустановки не будут помехой распространению теле- и радиосигналам.

Установка не наносит вред птицам. Попадания птиц на лопатки генератора можно предотвратить за счет установки защитных сеток на входе в конфузорные каналы. Для предотвращения столкновения птиц с БВУ в ночное время суток ее внешняя поверхность освещается. Это позволит улучшить и зрительное восприятие башни ВУ.

Взгляд в будущее

Башенная конструкция ветроустановки, по своим техническим характеристикам, значительно превосходит все современные ветроустановки традиционной конструкции, работающие со свободно набегающим потоком воздуха.
Ветроустановки башенного типа — достойная замена ВЭУ традиционной конструкции.

Они могут работать при более низких скоростях ветра.
Позволяют значительно увеличить количество вырабатываемой электроэнергии.
Их эффективность никак не ниже традиционных станций генерации электроэнергии, использующих углеродное топливо: газ, уголь, мазут, нефть, а экологическая чистота производства электроэнергии не имеет аналогов.
Ветроустановки башенного типа очень эффективно могут работать в регионах с малыми скоростями ветра.

Благодаря своей компактности, такие установки могут служить автономным и самодостаточным источником энергии.

Ветроустановки башенного типа сегодня — это мировая энергетика завтра: низкая себестоимость и высокое качество производства экологически чистой энергии.

Вниманию инвесторов!

В настоящее время ведется подготовка к серийному производству ветроустановок башенного типа (TWT) мощностью до 2 кВт.
Мы заинтересованы в партнерах для совместного продвижения новой технологии и ветроустановок TWT, для производства электрической энергии, в т.ч. и в условиях плотной городской застройки.
Приглашаем к сотрудничеству предприятия, работающие в энергетической области (в т.ч. и ветроэнергетики), муниципальные и общественные организации, заинтересованные в повышении надежности и управляемости энергосистемы города.
Безусловно, ветроустановки башенного типа не решат все энергетические проблемы города. Но они внесут свой существенный вклад в их решение.

Другие материалы рубрики


  • Многие ученые считают, что единственным масштабным и долговременным решением надвигающейся энергетической проблемы, одновременно удовлетворяющей условиям энергетической эффективности и экологической безопасности, является термоядерный синтез на базе использования лунного изотопа элемента гелия.
    Страна, которая опередит другие в освоении Луны и добычи гелия-3, станет лидером в мировой экономике, считает академик Эрик Галимов.



  • Чтобы получать тепло из снега, дождя и, что реже, града, нужен АТМОТЕРМ. Это устройство относится к стационарным приборам для нагревания текущих сред, использующий при прохождении данного процесса тепловой эффект экзотермической реакции образования гидроксида кальция из СаО, которая проходит при утилизации снежного покрова на месте его образования.
    Область применения устройства – генерация тепловой энергии для обогрева стен жилых и нежилых помещений, используя атмосферные осадки.
    Исследуя решения в данной области, мы не найдем наверняка устройства, объединяющего в себе функции переработки атмосферных осадков и обогревателя, работающего без подвода электроэнергии, при этом являясь таким экономичным, как атмотерм (экономичность смотрите дальше). Решения, предлагаемые другими авторами (смотри ниже) имеют ряд недостатков: потребляемость большого количества электроэнергии, узкая направленность технологий – только утилизация снега или только генерация тепловой энергии, сложность устройства, лежащее в наличии большого количества комплектующих компонентов, таких как ИК-излучатели и другие подобные устройства.

    • Страницы
    • 1
    • 2


  • Ситуация с термоядерной энергетикой сегодня довольно любопытна и имеет общие черты с начинавшейся некогда «космической гонкой». Открытие способа, открывающего доступ к неограниченному источнику энергии, казалось бы, уже «витает в воздухе». Уже всерьёз проектируются термоядерные электростанции. Уже почти видна финишная ленточка и вопрос лишь в том, кто успеет раньше. Руководители развитых государств ревностно следят за «успехами» конкурентов в этой области и боятся остаться «не солоно хлебавши». Эти страхи умело эксплуатируют крупные исследовательские центры, работающие по данной проблеме, добиваясь щедрого финансирования. Вот-вот и пресса возвестит об открытии века...



  • ...В 1949 году О. А. Лаврентьев предложил плазменное решение проблемы синтеза легких ядер в виде электростатической ловушки, однако на тот момент плазма оказалась наименее исследованным состоянием вещества и каждый раз преподносила новые «сюрпризы». Как правило, эти неприятные «подарки» представляли различного рода неустойчивости, приводившие к срыву необходимых режимов работы установок. Осуществление в 1951 году неуправляемой термоядерной реакции в земных условиях в ходе испытательного взрыва водородной бомбы стимулировало проведение исследований, связанных с управляемым термоядерным синтезом (УТС), как источником энергии. Систематические исследования проблемы УТС начались примерно одновременно в Англии, СССР и США в обстановке глубочайшей секретности, так как предполагалось, что их результаты могут найти применение в военных целях. Такие исследования, постепенно приближая решение задачи УТС, привели к развитию целого ряда «побочных» плазменных технологий, которые используются сейчас повсеместно.

    • Страницы
    • 1
    • 2
    • 3


  • ...После более чем столетия нескончаемых усовершенствований двигатель внутреннего сгорания все еще имеет коэффициент полезного действия около 16%. КПД всех тепловых двигателей ограничено циклом Карно. Теоретически, даже при идеальных условиях тепловой двигатель, используемый для приведения в движение автомобиля или электрогенератора, не может преобразовать всю тепловую энергию в механическую. Некоторая часть тепла теряется. В двигателе внутреннего сгорания тепло подается от источника с высокой температурой (Т1), часть энергии преобразуется в механическую и оставшаяся часть выбрасывается при низкой температуре (Т2). Чем больше разность между этими температурами, тем выше КПД двигателя...

    • Страницы
    • 1
    • 2
    • 3


  • ...Возможность установки ветрогенераторов также зависит от климата, а конкретнее – от средней скорости ветра в данной местности. Трудно спрогнозировать, каковы будут скорость и направление ветра в определенный момент. Но если рассматривать большие временные промежутки, соизмеримые со сроком эксплуатации ветряка, то можно довольно точно сказать, что, например, в течение года в месте его установки будет 4000 часов со скоростью ветра более 4 м/с, что обеспечит гарантированную генерацию, условно говоря, 1000 КВт·ч в год. В частности, у нас средняя скорость ветра составляет около 5 м/с, что вполне пригодно для получения ветровой энергии, так как рекомендуемая скорость ветра для этих целей 4 м/с и более.

    • Страницы
    • 1
    • 2
    • 3


  • Сначала приведем высказывание российского геофизика Е.П. Борисенкова о прошлом человечества:
    «Причины гибели или упадка некоторых цивилизаций, а также многие неблагоприятные социальные явления в период средневековья так же, как и в древней истории, были связаны с экологией.
    Если мышление человека античности в ряде случаев было настолько эгоистичным, что, несмотря на свои выдающиеся по тому времени научные и естественные познания, он не думал о связи между лесом, водой, почвой и последствиями своей деятельности, то и в период средневековья человечество ушло от этого уровня понимания не очень далеко».

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • Солнце — основной источник энергии на планете. В полдень на низких широтах плотность потока энергии солнечного излучения близка к 1 кВт/м²,, в среднем по освещенной части земного шара — 350 Вт/м². Потенциальный ресурс энергии огромен. Ей соответствует мощность 6,7∙1016 Вт. Теоретически КПД преобразования энергии может достигать 93%. Сейчас он составляет 10…30%. КПД определяет технический ресурс, равный произведению КПД на потенциальный ресурс.
    В настоящее время энергия солнечного излучения используется мало из-за относительно низких значений плотности потока энергии (100 — 1000 Вт/м²).
    Разрабатываются проекты создания солнечных энергосистем на геостационарной орбите с мощностью 1…10 ГВт. Передачу энергии на Землю планируется осуществлять при помощи мощных электромагнитных пучков на длине волны около 5…10 см.

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • Экспоненциальный рост населения и истощение природных ресурсов заставляют ученых придумывать самые невероятные проекты по спасению планеты. Один из них — космические электростанции, передающие на Землю энергию Солнца посредством микроволнового излучения. Технология эта не столь фантастична, как может показаться на первый взгляд.
    Вполне возможно, что лет через тридцать на геостационарной орбите обоснуется группировка объектов, каждый из которых будет подозрительно напоминать «Звезду смерти». Необъятные зеркальные крылья, нечто вроде электромагнитной пушки и наземная приемная антенна километров десять в диаметре — так будет выглядеть система глобального энергоснабжения.
    Вернее, такой ее представляли конструкторы еще в 1970-х. И уже тогда это не было научной фантастикой! В связи с энергетическим кризисом американское правительство выделило $20 миллионов агентству NASA и компании Boeing на проработку проекта гигантского спутника SPS (Solar Power Satellite).



  • Вопрос смесевых технологий при производстве бензинов давно уже интересует технологов, экологов, энергетиков, автомобилистов и просто любителей всяческих новшеств и современных технологий. Несмотря на множество позитивных моментов, так же как и на наличие определенных недостатков, однозначности в выводах пока еще не присутствует, что оставляет обширные пространства для размышлений и убеждений, похвалы и критики.

    • Страницы
    • 1
    • 2