Космические электростанции

Вс, 12/07/2014 - 21:40

Километровая полоса условной поверхности на высоте геостационарной орбиты получает в год около 212 тераватт энергии, что сопоставимо с суммарной энергетической ценностью всех разведанных запасов нефти, составляющей около 250 тераватт-лет (иллюстрация NSS)

Предполагаемый спутник будет оснащен легкими зеркалами на основе тонкопленочной оптики. Эти зеркала фокусируют солнечный свет на панели солнечных батарей для выработки электроэнергии, которая, в свою очередь, преобразуется в микроволновое сверхвысокочастотное излучение. Увы, это не реальный проект, а всего лишь концепт, разработанный совместно специалистами NSS и дизайнерами из Mafic Studios. Кстати, здесь можно найти анимированную версию презентации проекта (иллюстрация NSS/Mafic Studios)

Лучи из космоса захватываются ректенной и преобразуются обратно в электричество. Что касается последнего, наземного компонента орбитальной электростанции, то здесь особых технологических затруднений ученые не видят. Тем более что КПД антенных решеток по сравнению с первыми экспериментами вырос в 4-5 раз — до 50% и более (иллюстрация NSS/Mafic Studios)

Микроволны могут передаваться через атмосферу Земли на частоте от 2,45 до 5,8 гигагерца. Оптимальным считается нижний диапазон — дальнейшее увеличение частоты (и пропорциональное уменьшение размеров передатчика) невыгодно, поскольку сверхвысокочастотное излучение имеет более высокий уровень атмосферной адсорбции (иллюстрация NSS/Mafic Studios)

Слева — концепт демонстрационной модели спутника SBPS. Справа — космостанция, которую, по-видимому, придется строить для установки орбитальных электростанций. Еще и минералы на Луне добывать хотят. Конкретные цифры никто не называет, но стоимость проекта скромно оценивают на одном уровне с МКС, то есть около $39 миллиардов. Но и этого, скорее всего, не хватит — только расходы на запуск некоторые специалисты оценивают в $20 миллиардов (иллюстрация NSS)

Экспоненциальный рост населения и истощение природных ресурсов заставляют ученых придумывать самые невероятные проекты по спасению планеты. Один из них — космические электростанции, передающие на Землю энергию Солнца посредством микроволнового излучения. Технология эта не столь фантастична, как может показаться на первый взгляд.

Вполне возможно, что лет через тридцать на геостационарной орбите обоснуется группировка объектов, каждый из которых будет подозрительно напоминать «Звезду смерти». Необъятные зеркальные крылья, нечто вроде электромагнитной пушки и наземная приемная антенна километров десять в диаметре — так будет выглядеть система глобального энергоснабжения.
Вернее, такой ее представляли конструкторы еще в 1970-х. И уже тогда это не было научной фантастикой! В связи с энергетическим кризисом американское правительство выделило $20 миллионов агентству NASA и компании Boeing на проработку проекта гигантского спутника SPS (Solar Power Satellite).

По расчетам ученых, один аппарат SPS обладал бы базовой «орбитальной» мощностью (baseload power) около пяти тысяч мегаватт, из которых, после всех потерь, две попадало конечным потребителям. Для сравнения: мощность крупнейшей в России Саяно-Шушенской ГЭС составляет 6400 мегаватт. Цифры сопоставимые.

Правда, оценочная стоимость проекта, по слухам, составила около триллиона долларов… Вердикт — «экономически нецелесообразен». Но с тех пор производительность одних только фотоэлементов выросла в несколько раз — с 10% до 40% (точнее, до 42,8%), не говоря уже о прогрессе в микроэлектронике. И это не осталось незамеченным: Национальное космическое общество (NSS) представило на рассмотрение Министерства обороны США (DoD) доклад, в котором проведен анализ перспектив развития космической энергетики и обрисован концептуальный прообраз будущей орбитальной электростанции.

Попробуем разобраться, что же мешает запустить ее прямо сейчас.
Основное преимущество энергосистемы в открытом космосе — высокая эффективность. Рассеивание света и поглощение его энергии атмосферной водой и молекулами газов, входящих в состав воздуха, отнимают около 35% энергии фотонов. Но самое главное — непостоянство источника излучения: речь идет о зависимости от времени суток, сезона и погоды.

Все эти факторы снижают суммарный потенциал наземной солнечной батареи на 75-90%, то есть на порядок. В то же время на геостационарной орбите спутник будет находиться в рабочем режиме практически круглый год, с незначительными перерывами в энергоснабжении во время равноденствия — и то на 75 минут.

Для обеспечения «собирательной» функции нового аппарата под кодовым именем SBPS (Space–Based Solar Power) предлагаются два источника: уже не раз испытанные на обычных спутниках фотоэлементы, а также тепловые двигатели. Вариант с солнечными батареями как раз и продвигает NSS.

Другой, более неприхотливой технологией является обычный тепловой агрегат, преобразующий свет в энергию посредством его фокусировки — оптической линзой, к примеру. Однако у него есть существенный недостаток: небольшое отклонение спутника, даже на несколько градусов, вызовет резкое падение мощности, вплоть до нуля. Да и удельная эффективность фотовольтаики несопоставимо выше — от 10 до 0,5 кг/кВ. Фактор массы доставляемого на орбиту груза играет не последнюю роль в осуществимости проекта.

Второй важнейшей функцией SBPS — по порядку, но не по значению, — является беспроводная передача энергии. У многих эта технология ассоциируется с загадочными лучами Теслы и прочими чуть ли не мистическими явлениями. На самом деле исследования в этом направлении действительно были впервые предприняты великим сербским изобретателем. Но с тех пор много воды утекло, и ныне передача импульса микроволновым лучом не является чем-то сверхъестественным.
Еще в ходе проработки насовского проекта в Лаборатории реактивного движения (JPL) удалось достичь эффективности 82% — именно такой КПД зарегистрировали приборы при передаче 30 киловатт на расстояние в одну милю еще в 1975 году.
Вроде бы проблем нет. И все же у использования микроволновой передачи, в отличие от солнечных батарей, есть ряд ограничений.

Во-первых, это требования к размеру антенны. Расчеты показали, что наиболее эффективной будет передача на частоте 2,45 гигагерца — это позволяет поддерживать оптимальное соотношение размеров передатчика и приемника. Но даже в этом случае диаметр спутникового трансмиттера составит один километр, а наземного приемника — десять километров.
Во-вторых, электроники, способной работать при сверхвысоких температурах (под воздействием прямых солнечных лучей) и выполнять преобразование электричества в микроволновое излучение, пока просто не существует. По мнению специалистов из NSS, проблема не выглядит нерешаемой, однако, как говорится, не узнаешь, пока не попробуешь.

Ну и, в-третьих, сама возможность эффективной передачи сигнала с орбиты, несмотря на оптимизм различных групп разработчиков, не вполне очевидна. Хотя недавно на Гавайях удалось осуществить трансмиссию импульса на расстояние 148 километров — выше официальной границы между земной атмосферой и космосом.

Поскольку излучение неионизирующее, проблем при «прохождении» ионосферы теоретически возникнуть не должно. Но вот удастся ли, с учетом рассеивания и адсорбции, удержать КПД трансляции на приемлемом уровне — пока вопрос открытый.
В сухом остатке, если отбросить сомнения в осуществимости беспроводной космической передачи, — лишь экономика. С размером передатчика мы уже успели ознакомиться. Площадь солнечных батарей будет еще больше.

Как все это притащить в космос, да еще и собрать? Вот где собака зарыта. По расчетам NSS, при нынешней стоимости запуска киловатт энергии не может «весить» больше 3-6 килограммов. В верхнюю границу этого диапазона, считают американцы, проект укладывается — дело лишь в деньгах и волевом решении правительства. Стоимость человеко-часов (а для монтажа понадобится невероятное количество трудящихся в открытом космосе) заменена в технико-экономическом обосновании роботизированной самосборкой. Что тоже сомнительно, поскольку никто не знает, будет ли все это работать на самом деле.

Тем не менее авторы проекта полны оптимизма. По оценкам Джона Мэнкинса (John Mankins), ранее работавшего над аналогичной программой в NASA, при условии выделения финансирования в 2009-м демонстрационную модель спутника мощностью 100 мегаватт удастся запустить в 2017 году. А уже к 2020-му (максимум к 2025-му) в космос полетят пять комплексов суммарной мощностью 20 гигаватт.

Но это составит всего лишь около 2% ежегодного потребления электроэнергии в США, так что, по всей видимости, останавливаться на пяти электростанциях лоббисты космической программы не собираются. Что ж, японцы тоже нацелились на 2030 год со своим планом. Так что какие-то подвижки в этой сфере в ближайшее время должны произойти.

Скорее всего, усилия придется объединить — по примеру МКС. Американцы с этим, в принципе, согласны. Да и программу масштабных космических стартов решить в одиночку нереально.
В любом случае проект космической электростанции обещает быть одним из основных участников «альтернативной» гонки, на финише которой человечество ожидает увидеть решение своих энергетических проблем

Другие материалы рубрики


  • Если внимательно присмотреться к рынку многофункциональных преобразователей, то даже не смотря на всемирный спад и уменьшение продаж, многие производители не перестают выступать новые инверторы. Отчасти подобное связано с тем, что компании стараются привлечь внимание покупателей, частично из-за применения последних технологий.
    Несмотря на то, что источник бесперебойного питания купить можно в любом магазине, новинки не так быстро достигают конечного потребителя.



  • ...После более чем столетия нескончаемых усовершенствований двигатель внутреннего сгорания все еще имеет коэффициент полезного действия около 16%. КПД всех тепловых двигателей ограничено циклом Карно. Теоретически, даже при идеальных условиях тепловой двигатель, используемый для приведения в движение автомобиля или электрогенератора, не может преобразовать всю тепловую энергию в механическую. Некоторая часть тепла теряется. В двигателе внутреннего сгорания тепло подается от источника с высокой температурой (Т1), часть энергии преобразуется в механическую и оставшаяся часть выбрасывается при низкой температуре (Т2). Чем больше разность между этими температурами, тем выше КПД двигателя...

    • Страницы
    • 1
    • 2
    • 3


  • Солнце — основной источник энергии на планете. В полдень на низких широтах плотность потока энергии солнечного излучения близка к 1 кВт/м²,, в среднем по освещенной части земного шара — 350 Вт/м². Потенциальный ресурс энергии огромен. Ей соответствует мощность 6,7∙1016 Вт. Теоретически КПД преобразования энергии может достигать 93%. Сейчас он составляет 10…30%. КПД определяет технический ресурс, равный произведению КПД на потенциальный ресурс.
    В настоящее время энергия солнечного излучения используется мало из-за относительно низких значений плотности потока энергии (100 — 1000 Вт/м²).
    Разрабатываются проекты создания солнечных энергосистем на геостационарной орбите с мощностью 1…10 ГВт. Передачу энергии на Землю планируется осуществлять при помощи мощных электромагнитных пучков на длине волны около 5…10 см.

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • Недавно в новостях услышал информацию о том, что весной 2010 г. городское население планеты превысило сельское и составляет 51%. В 2020 г. городское население уже будет составлять 57%.
    Вроде бы ничего интересного. Сухая статистика.
    Но за этой статистикой просматривается очень настораживающая тенденция, если учесть, что за этот период население Земли вырастет с 6,8 до 8 миллиардов человек.
    Урбанизация растет огромными темпами.

    • Страницы
    • 1
    • 2


  • Еще с незапамятных времен люди использовали энергию ветра.
    Первоначально человек научился преобразовывать кинетическую энергию воздушного потока (ветра) в механическую. Появилось огромное разнообразие ветряных мельниц, значительно облегчивших жизнь людей того времени.
    Идея ветрогенератора для выработки электрической энергии с использованием энергии ветра появилась чуть более 100 лет назад.
    Пытливая мысль изобретателей создала огромное разнообразие конструкций ветроустановок:
    — по расположению оси вращения лопастей (горизонтальная, вертикальная, наклоненная);
    — по количеству лопастей (одна, две, три и более);
    — по мощности (от десятков Ватт до нескольких МВатт);
    — по форме лопастей, по конструкции генераторов и т.д.

    • Страницы
    • 1
    • 2


  • ...Возможность установки ветрогенераторов также зависит от климата, а конкретнее – от средней скорости ветра в данной местности. Трудно спрогнозировать, каковы будут скорость и направление ветра в определенный момент. Но если рассматривать большие временные промежутки, соизмеримые со сроком эксплуатации ветряка, то можно довольно точно сказать, что, например, в течение года в месте его установки будет 4000 часов со скоростью ветра более 4 м/с, что обеспечит гарантированную генерацию, условно говоря, 1000 КВт·ч в год. В частности, у нас средняя скорость ветра составляет около 5 м/с, что вполне пригодно для получения ветровой энергии, так как рекомендуемая скорость ветра для этих целей 4 м/с и более.

    • Страницы
    • 1
    • 2
    • 3


  • Многие десятилетия неизменным элементом пейзажа промышленной нефтедобычи являлись грандиозные факелы, в которых сгорал попутный газ — неизбежный спутник нефтедобычи. Громадные шлейфы дыма простирались на десятки и сотни километров и были прекрасно видны даже из космоса. Так было долго и казалось, что так будет всегда. Но все меняется в этом мире, и иногда — в лучшую сторону.

    • Страницы
    • 1
    • 2


  • Теперь уже никто не сомневается, что в расстрельные 30-е годы прошлого века ничего прогрессивного в России существовать не могло. Старшее поколение стыдливо молчит, поскольку высказывать иную точку зрения ныне считается непатриотичным. А постперестроечное вообще не ведает, что в основе многих модных сейчас инновационных проектов лежат неосуществленные мечты почти восьмидесятилетней давности. Примером может служить история со сгущенным бензином.

    • Страницы
    • 1
    • 2

  • При минусовой температуре проблемы с запуском двигателя гарантированы. Это знает каждый опытный автомобилист, которому не раз приходилось подолгу просиживать в холодном салоне, пытаясь завести автомобиль. А вот о причинах этих самых проблем думает далеко не каждый водитель. Еще до того, как температура опустится ниже нуля, важно сменить все жидкости в автомобиле на незамерзающие. Это касается моторного масла, охлаждающей жидкости, жидкости в бачке омывателя. Нужно тщательно смазать стартер и прочие системы мотора, от этого также зависит степень прилагаемых для запуска двигателя усилий в сильный мороз.



  • Нефте- и газодобыча уже в течение многих лет — ведущие отрасли российской экономики. В иные периоды они давали до 50% поступлений в федеральный бюджет. Это стало возможным только после введения в эксплуатацию крупнейших месторождений Западной Сибири. Поиск месторождений, ставших открытием века, стоил огромного труда. Основной вклад в него внесли сибирские геологи.
    Чтобы понять, где и как искать нефть, — а ее считают самым труднодоступным богатством планеты, — надо знать, как она образуется. В 1932 году была опубликована классическая работа основоположника советской нефтяной геологии Ивана Михайловича Губкина (1871-1939) «Учение о нефти», которая сыграла огромную роль в развитии представлений о происхождении нефти и формировании ее залежей. Он сформулировал четыре этапа образования нефтяных запасов, которые и сегодня лежат в основе научных воззрений о процессах нефтеобразования.

    • Страницы
    • 1
    • 2
    • 3
    • 4