Отчего горит звезда?

Чт, 06/13/2013 - 22:37

Через десять секунд после вспышки термоядерное пламя почти полностью сжигает белый карлик в этой компьютерной модели. Стремительно распространяясь из глубины наружу, цепная ядерная реакция превращает углерод и кислород (сиреневый и красный) в кремний (оранжевый) и железо (желтый). Более ранние модели, не способные проследить турбулентные движения, не могли объяснить, почему звезды не тихо умирают, а взрываются

Термоядерная сверхновая

Каждый вычислительный сет потребовал более чем 1020 арифметических операций; с такой задачей мог справиться лишь суперкомпьютер, проделывающий более 1011 операций в секунду. В итоге все это заняло почти 60 процессоро-лет. Различные вычислительные ухищрения, упрощающие модель и используемые в других областях науки, неприменимы к сверхновым с их асимметричными течениями, экстремальными условиями и гигантским пространственным и температурным диапазоном. Физика частиц, ядерная физика, гидродинамика и теория относительности очень сложны, а модели сверхновых должны оперировать ими одновременно.

Под капотом

Решение пришло с неожиданной стороны — при изучении работы автомобильного двигателя. Перемешивание бензина и кислорода и их воспламенение создают турбулентность, которая, в свою очередь, увеличивает поверхность горения, интенсивно деформируя ее. При этом скорость сжигания топлива, пропорциональная площади горения, возрастает. Но и звезда тоже турбулентна. Потоки газа проходят в ней огромные расстояния с большой скоростью, поэтому малейшие возмущения быстро превращают спокойное течение в турбулентный поток. В сверхновой всплывающие горячие пузыри должны перемешивать вещество, заставляя ядерное горение распространяться так быстро, что звезда не успеет перестроиться и «затушить» пламя.

В исправно работающем двигателе внутреннего сгорания пламя распространяется с дозвуковой скоростью, ограниченной скоростью диффузии тепла сквозь вещество — такой процесс называют дефлаграцией, или быстрым горением. В «стреляющем» двигателе пламя распространяется со сверхзвуковой скоростью в виде ударной волны, проносящейся по кислородно-топливной смеси и сжимающей ее (детонация). Термоядерное пламя может распространяться тоже двумя путями. Детонация способна полностью сжечь звезду, оставив только самые «негорючие» элементы, такие как никель и железо. Однако в продуктах этих взрывов астрономы обнаруживают большое разнообразие элементов, включая кремний, серу и кальций. Следовательно, ядерное горение распространяется, по крайней мере, в начале, как дефлаграция.

В последние годы были созданы надежные модели термоядерной дефлаграции. Исследователи из Калифорнийского (г. Санта-Круз), Чикагского университетов и наша группа опирались при этом на программы, созданные для исследования химического горения и даже для прогноза погоды. Турбулентность — принципиально трехмерный процесс. В турбулентном каскаде кинетическая энергия перераспределяется от больших масштабов к малым и, в конце концов, рассеивается в виде тепла. Исходный поток дробится на все более и более мелкие части. Поэтому моделирование непременно должно быть трехмерным.
Модель сверхновой имеет грибообразный вид: горячие пузыри поднимаются в слоеной среде, сморщиваясь и растягиваясь турбулентностью. Усиленный ею рост скорости ядерных реакций за несколько секунд приводит к разрушению белого карлика, остатки которого разлетаются со скоростью около 10 тыс. км/с, что соответствует наблюдаемой картине.

Но до сих пор не ясно, отчего воспламеняется белый карлик. Кроме того, дефлаграция должна выбрасывать большую часть вещества карлика неизмененной, а наблюдения показывают, что лишь малая часть звезды не изменяется. Вероятно, взрыв обусловлен не только быстрым горением, но и детонацией, а причина сверхновых типа Ia — не только аккреция вещества на белый карлик, но и слияние двух белых карликов.

Гравитационная могила

Другой тип сверхновых, вызванный коллапсом звездного ядра, объяснить труднее. С наблюдательной точки зрения эти сверхновые более разнообразны, чем термоядерные: одни из них имеют водород, другие нет; одни взрываются в плотной межзвездной среде, другие — в почти пустом пространстве; одни выбрасывают огромное количество радиоактивного никеля, другие нет. Энергия выброса и скорость расширения также различаются. Самые мощные из них производят не только классический взрыв сверхновой, но и продолжительный гамма-всплеск (см.: Герелс Н., Леонард П. и Пиро Л. Ярчайшие взрывы во Вселенной // ВМН, № 4, 2003). Эта неоднородность свойств — одна из многих загадок. Сверхновые с коллапсом ядра — основные кандидаты для формирования самых тяжелых элементов, таких как золото, свинец, торий и уран, которые могут образоваться только в особых условиях. Но никто не знает, действительно ли такие предпосылки возникают в звезде, когда ее ядро взрывается.

Другие материалы рубрики


  • Галактика, в которой мы живем, — Млечный Путь — настоящий исполин по галактическим меркам. Среди галактик местной группы лишь Туманность Андромеды может тягаться с нашим домом по количеству звезд, размерам и массе. Однако сферы влияния гигантов давно поделены, и нашу галактику окружают десятки, а может, и сотни галактик-спутников.
    Сейчас известны по крайней мере 23 спутника нашей галактики. Некоторые из них светятся, как миллиарды солнц, и жителям Южного полушария нашей планеты отлично знакомы Магеллановы облака — крупнейшие спутники нашей Галактики, не заметить которые на ночном небе невозможно даже невооруженным глазом.



  • Судя по многочисленным публикациям, посвященным современной астрофизике, она находится на подъеме. Положение дел даже сравнивают с революционной ситуацией, сложившейся в физике в начале прошлого века. Но если тогда истина рождалась в спорах, сейчас новые понятия проникают в астрофизику практически без сопротивления. При этом ключевые положения старой теории, вместо того, чтобы обрести окончательную ясность, заменяются наборами гипотез. Современный астрофизик подробно объяснит, что такое космологический вакуум или антигравитация, но на вопрос о происхождении галактик даст расплывчатый ответ, включающий несколько возможных сценариев.

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • Давайте вспомним испытание противоспутникового оружия, проведенное 11 января 2007 года Китаем. Почему оно вызвало беспокойство у специалистов космической отрасли? Ведь с 1968-го по 1986-й США и СССР провели свыше 20 таких же испытаний! И с того времени уже было проведено несколько подобных испытаний?! Дело вовсе не в международной безопасности. Или не только в ней.



  • Впервые астрономы обнаружили планету вне нашей Солнечной системы, которая является потенциально пригодной для жизни, с температурами подобными земным, сопоставимыми с Землей массой и размером и, вероятно, жидкой водой на поверхности. Что приятно, потенциально обитаемый мир находится всего в двух десятках световых лет от нас. Когда-нибудь люди туда смогут добраться.
    О сенсационной находке рассказала 25 апреля 2007 года международная группа из 11 астрономов (из Швейцарии, Португалии и Франции), которая работала в Чили, на одном из телескопов Европейской южной обсерватории (ESO). Ученые нашли сходную с Землей планету у звезды Gliese 581 — красного карлика, расположенного в созвездии Весы.
    Планета, получившая имя Gliese 581c, обладает массой примерно в 5 масс Земли. Ее диаметр оценивается в 1,5 диаметра нашей планеты, так что сила тяжести на ее поверхности составляет приблизительно 1,6 g. Из-за этих параметров астрономы окрестили ее также «Суперземлей» (super-Earth).
    Ученые предполагают, что эта планета — скалистый мир, сходный с Землей по облику. Как возможный вариант — это может быть ледяная планета. Но в обоих случаях на ее поверхности должна быть жидкая вода. Причем, в случае с ледяным миром — она может быть покрыта океаном полностью.



  • Эксперты ООН в ежегодных докладах публикуют данные, говорящие, что Землю в перспективе ждет катастрофическое глобальное потепление, обусловленное возрастающими выбросами углекислого газа в атмосферу. Однако наблюдение за Солнцем позволяет утверждать, что в повышении температуры углекислый газ «не виноват» и в ближайшие десятилетия нас ждет не катастрофическое потепление, а глобальное, и очень длительное, похолодание.

    • Страницы
    • 1
    • 2
    • 3
    • 4
    • 5


  • Итак, знакомимся с действующими лицами драмы. Коричневый карлик 2M1207 спектрального класса M8 (его можно увидеть хорошо вооруженным глазом в созвездии Центавр) и его небольшой компаньон — планета 2M1207b. Последняя уже несколько лет как мучает ученых своими загадками. И вот теперь новейшее исследование позволило предположить: странные особенности данного объекта объясняются тем, что он рожден в результате совсем недавнего столкновения двух планет.



  • ...Теперь вы должны быть предельно внимательны. Следующие несколько секунд окажутся решающими, поэтому вы включаете высокоскоростную регистрирующую систему для детальной записи всех приходящих сведений. Через 61 с R3D3 сообщает, что все системы пока функционируют нормально, горизонт - на расстоянии 8000 км и приближается со скоростью 15 тыс. км/с. Проходит 61,6 с. Еще все в порядке, до горизонта осталось 2000 км, скорость - 30 тыс. км/с (или 0,1 скорости света, так что цвет излучения начинает меняться все заметнее). А затем, в течение следующей 0,1 с вы с изумлением замечаете, что излучение из зеленого становится красным, инфракрасным, микроволновым, затем приходят радиоволны и наконец все исчезает. Через 61,7 с все кончено - лазерный луч пропал. R3D3 достиг скорости света и исчез за горизонтом.

    • Страницы
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6


  • Наблюдения на рентгеновской обсерватории «Чандра» показали наличие большого числа маломассивных рентгеновских двойных звезд в эллиптических и линзовидных галактиках, а также в балджах — центральных сферических компонентах — дисковых галактик. Распределение источников по светимостям хорошо описывается двумя компонентами, граница между которыми соответствует светимости порядка (2-3) 1038 эрг/с. Т.к. эта величина примерно соответствует максимальной (т.н. Эддингтоновской) светимости объекта с массой 1.4 Мо, то возможно, что более мощные источники являются аккрецирующими черными дырами, а менее мощные — нейтронными звездами. Т.о. с некоторой долей уверенности можно говорить, что мы видим в галактиках ранних типов — эллиптических и линзовидных — тесные двойные системы как с черными дырами (самые яркие источники), так и с нейтронными звездами (менее яркие).



  • ...Итак, согласно полученным результатам, в конце первой секунды температура достигла 1010 К — это слишком много для того, чтобы могли существовать сложные ядра. Все пространство Вселенной было тогда заполнено хаотически движущимися протонами и нейтронами, вперемешку с электронами, нейтрино и фотонами (тепловым излучением). Ранняя Вселенная расширялась чрезвычайно быстро, так что по прошествии минуты температура упала до 108 К, а спустя еще несколько минут — ниже уровня, при котором возможны ядерные реакции...

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • Был ли Большой взрыв началом времени или Вселенная существовала и до него? Лет десять назад такой вопрос казался нелепым. В размышлениях о том, что было до Большого взрыва, космологи видели не больше смысла, чем в поисках пути, идущего от Северного полюса на север. Но развитие теоретической физики и, в частности, появление теории струн заставило ученых снова задуматься о предначальной эпохе.
    Вопрос о начале начал занимать философов и богословов с давних времен. Он переплетается с множеством фундаментальных проблем, нашедших свое отражение в знаменитой картине Поля Гогена «D’ou venons-nous? Que sommes-nous? Ou allons-nous?» («Откуда мы пришли? Кто мы такие? Куда мы идем?»). Полотно изображает извечный цикл: рождение, жизнь и смерть — происхождение, идентификация и предназначение каждого индивидуума. Пытаясь разобраться в своем происхождении, мы возводим свою родословную к минувшим поколениям, ранним формам жизни и прото-жизни, химическим элементам, возникшим в молодой Вселенной, и, наконец, к аморфной энергии, некогда заполнявшей пространство. Уходит ли наше фамильное древо корнями в бесконечность или космос так же не вечен, как и мы?

    • Страницы
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6