Проблемы малой энергетики

Пнд, 05/18/2009 - 12:03

Солнечные батареи чаще всего выпускаются в виде плоских панелей (рис. 1), которые удобно устанавливать, например, на крышах домов. Они состоят из плоской основы, на которой закрепляются фотоэлементы. Один такой элемент дает довольно низкое напряжение, поэтому несколько элементов соединяются последовательно или параллельно для увеличения соответственно напряжения или тока. Фотоэлементы таких батарей чаще всего изготавливаются из кремния. Дороговизна таких панелей подтолкнула к тому, что появился другой их вид: здесь сам генерирующий элемент выполнен на поверхности трубки, а солнечный свет концентрируется на них с помощью отражателей, называемых концентраторами. Концентратор может быть параболической или другой формы (рис. 2). В этом случае на фотоэлементе создается очень большая плотность излучения, и трубка нуждается в постоянном охлаждении, для чего через нее пропускают воду или другое охлаждающее вещество. Сам фотоэлемент изготавливается уже из других материалов, способных работать при мощных излучениях. В солнечных батареях с концентраторами сам фотоэлемент имеет меньшую площадь, чем в плоских панелях, а потому при одинаковой мощности такая батарея будет иметь меньшую стоимость. А возможно и наоборот, использование более дорогих и эффективных фотоэлементов в солнечных батареях с концентраторами обеспечит большую мощность при той же цене.

Эффективность обычных плоских солнечных панелей заметно повышается, если снабдить их устройством слежения, которое направляет их точно на Солнце. Батареи с параболическими концентраторами вообще без такого устройства работать не будут.

Преимущество солнечных батарей состоит в том, что они превращают свет непосредственно в электрическую энергию, здесь нет ни нагрева воды, ни движущихся элементов, если не считать относительно простых устройств слежения, они бесшумны и не выбрасывают вредных веществ. Однако с их экологической чистотой можно поспорить: для изготовления материалов солнечных элементов требуется напряженная работа химической промышленности.

Другим недостатком полупроводниковых солнечных батарей является их низкий коэффициент полезного действия, порядка 10 – 15 процентов, остальная энергия солнечного света либо отражается, либо уходит на нагрев элемента, а нагрев в свою очередь еще больше понижает КПД. Различные фирмы и группы ученых сейчас заявляют об изобретении новых материалов для солнечных батарей с более высоким КПД (более 30%), но в массовом производстве они пока не замечены.

Наряду с непосредственным преобразованием солнечного света в электричество есть огромное количество проектов, где на солнце нагреваются вода или воздух, например, в одном из таких проектов предлагается часть пустыни Сахара покрыть крышей, под которой будет сильно нагреваться воздух, затем он будет выходить через огромной высоты трубу. При этом в трубе должна возникать мощная тяга, которая сможет вращать турбину. Это, конечно, сложнее обычных плоских панелей, но такие проекты могут быть гораздо выгоднее и экологически чище, к тому же их можно разместить в тех местах, которые могут быть непригодными для других видов хозяйства, например, в той же Сахаре или зоне радиоактивного заражения чернобыльской АЭС. О том, как солнце используется для нагрева воды, умолчим, ведь любой сельский житель об этом знает.

Энергия ветра

Также довольно широко используется, поскольку считается относительно дешевой. Целые леса ветрогенераторов можно встретить в Европе и Америке.

Возможность установки ветрогенераторов также зависит от климата, а конкретнее – от средней скорости ветра в данной местности. Трудно спрогнозировать, каковы будут скорость и направление ветра в определенный момент. Но если рассматривать большие временные промежутки, соизмеримые со сроком эксплуатации ветряка, то можно довольно точно сказать, что, например, в течение года в месте его установки будет 4000 часов со скоростью ветра более 4 м/с, что обеспечит гарантированную генерацию, условно говоря, 1000 КВт·ч в год. В частности, у нас средняя скорость ветра составляет около 5 м/с, что вполне пригодно для получения ветровой энергии, так как рекомендуемая скорость ветра для этих целей 4 м/с и более.

Как известно ветрогенератор - это большая машина. Можно даже сказать - грандиозное сооружение. Но любое сооружение невозможно построить без строительной техники, такой как экскаваторы, бульдозеры, краны, телескопические погрузчики. Вся эта техника очень нужна и незаменима при строительстве любых строительных объектов.

Для ветрогенератора с длиной лопасти три метра при скорости ветра 5 м/с полученная энергия составит 2280 Ватт·с, энергия при той же скорости ветра в течение часа - 2,28 КВт·ч. Однако воздушный винт ветрогенератора никогда не уловит всю эту энергию, поэтому реальная его мощность будет меньше в два – три раза.

Самый традиционный ветрогенератор изображен на рис. 3. Конструкция установлена на мачте, высота которой в зависимости от типа и мощности генератора может составлять от нескольких до нескольких десятков метров. Под действием ветра приходит во вращение воздушный винт. Внутри корпуса находится сам генератор, редуктор, повышающий обороты, и другие элементы, обеспечивающие работу генератора. Он может вращаться на мачте, подстраиваясь под изменяющееся направление ветра. Генератор дополняется модулем, где располагается электронное оборудование, которое служит для создания стабильного напряжения, пригодного для питания всевозможных бытовых приборов, а также обеспечивает зарядку аккумуляторной батареи.

Если говорить о ветровой энергетике для сельского подворья или дачи, то средняя мощность такого ветряка может быть равной одному киловатту. Это позволит включить несколько ламп, холодильник и телевизор, но для нагревательных приборов энергии может уже не хватить.

Недостатки ветряных электростанций – слабая отдача энергии при низких скоростях ветра и шум. Поскольку мощность ветрогенератора пропорциональна кубу скорости ветра, при ее уменьшении в два раза мощность уменьшится в восемь раз. Мощные же ветроэлектростанции излучают инфразвуковые волны, которые не слышны, но действуют отрицательно на человека, прежде всего, на его нервную систему, приводя к повышенной утомляемости и другим расстройствам.

Поскольку ветер дует не всегда, для постоянной работы ветровой энергетической установки нужны мощные аккумуляторы, которые накапливают энергию в ветреное время и отдают ее во время штиля. Это же касается и солнечных батарей.

Другие материалы рубрики


  • В начале нового тысячелетия почти весь мир столкнулся с новой, весьма болезненной проблемой — истощением топливных запасов планеты. Ученые с каждого угла кричали, что через 30 лет на земле не останется ни капли нефти. Но прошло уже 10 лет, и эти крики понемногу улеглись. Были найдены новые месторождения в Саудовской Аравии, в России разведали новые, огромные запасы сибирской и заполярной нефти. Единственная проблема — добраться до них, но учитывая сегодняшнюю стоимость «черного золота» на мировом рынке, это не будет составлять особого труда.
    Но беда, как известно, не приходит одна. С топливной проблемой пришла проблема загрязнения окружающей среды обитания человека. Продукты сгорания бензина и дизтоплива стали настолько насыщать атмосферу Земли, что экологи забили тревогу. Их главный девиз — «Парниковый эффект!» К сожалению, они до сих пор не могут определиться, чем он грозит нашей планете — глобальным потеплением или новым ледниковым периодом. Впрочем, одно не исключает другое. Сначала довольно сильно потеплеет, арктические льды растают, опять понизят температуру, но настолько сильно, что 2/3 суши (по самым пессимистическим прогнозам) покроется снегом и льдом.
    Что же делать? Отказаться от автомобильного транспорта и вообще от использования нефти и нефтепродуктов? В данный исторический отрезок времени это даже не теория, а какая-то фантазия Гринписа, если не сказать больше. Но нам надо как-то сберечь природу и при этом не нанести вреда экономике, как в мировом масштабе, так и в масштабе отдельной страны. И тут, к огромной радости почти всех экологов (почему почти — будет сказано ниже) на мировую топливную арену семимильными шагами выходит новое горючее — биодизель.

    • Страницы
    • 1
    • 2
    • 3


  • Ветры бывают самые разнообразные: это и дующий десятки минут легкий бриз, и глобальные ветра — но все они существуют за счет солнечного нагрева планеты. Важными факторами влияния на атмосферную циркуляцию воздуха являются разность обогрева между экватором и полюсами, а также вращение нашей планеты, называемое эффектом Кориолиса. Сезонные колебания в скорости и направлении ветра являются результатом сезонных изменений из-за относительного наклона оси вращения Земли к Солнцу, которое, в свою очередь, изменяет паттерны разности обогрева. Ежедневные различия в обогреве атмосферы вызваны различным нагревом локальных областей поверхности земли, например, суши и океана. Еще движение воздуха осложняется целым рядом факторов глобального масштаба, таких как вращение Земли, а также сушей, горными хребтами и холмами, растительностью, океанами, морями и озерами. Из-за трения о поверхность земли, растительность и здания скорость ветра возрастает с увеличением высоты над поверхностью земли.

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • Экспоненциальный рост населения и истощение природных ресурсов заставляют ученых придумывать самые невероятные проекты по спасению планеты. Один из них — космические электростанции, передающие на Землю энергию Солнца посредством микроволнового излучения. Технология эта не столь фантастична, как может показаться на первый взгляд.
    Вполне возможно, что лет через тридцать на геостационарной орбите обоснуется группировка объектов, каждый из которых будет подозрительно напоминать «Звезду смерти». Необъятные зеркальные крылья, нечто вроде электромагнитной пушки и наземная приемная антенна километров десять в диаметре — так будет выглядеть система глобального энергоснабжения.
    Вернее, такой ее представляли конструкторы еще в 1970-х. И уже тогда это не было научной фантастикой! В связи с энергетическим кризисом американское правительство выделило $20 миллионов агентству NASA и компании Boeing на проработку проекта гигантского спутника SPS (Solar Power Satellite).



  • Многие десятилетия неизменным элементом пейзажа промышленной нефтедобычи являлись грандиозные факелы, в которых сгорал попутный газ — неизбежный спутник нефтедобычи. Громадные шлейфы дыма простирались на десятки и сотни километров и были прекрасно видны даже из космоса. Так было долго и казалось, что так будет всегда. Но все меняется в этом мире, и иногда — в лучшую сторону.

    • Страницы
    • 1
    • 2


  • Теперь уже никто не сомневается, что в расстрельные 30-е годы прошлого века ничего прогрессивного в России существовать не могло. Старшее поколение стыдливо молчит, поскольку высказывать иную точку зрения ныне считается непатриотичным. А постперестроечное вообще не ведает, что в основе многих модных сейчас инновационных проектов лежат неосуществленные мечты почти восьмидесятилетней давности. Примером может служить история со сгущенным бензином.

    • Страницы
    • 1
    • 2


  • Чтобы получать тепло из снега, дождя и, что реже, града, нужен АТМОТЕРМ. Это устройство относится к стационарным приборам для нагревания текущих сред, использующий при прохождении данного процесса тепловой эффект экзотермической реакции образования гидроксида кальция из СаО, которая проходит при утилизации снежного покрова на месте его образования.
    Область применения устройства – генерация тепловой энергии для обогрева стен жилых и нежилых помещений, используя атмосферные осадки.
    Исследуя решения в данной области, мы не найдем наверняка устройства, объединяющего в себе функции переработки атмосферных осадков и обогревателя, работающего без подвода электроэнергии, при этом являясь таким экономичным, как атмотерм (экономичность смотрите дальше). Решения, предлагаемые другими авторами (смотри ниже) имеют ряд недостатков: потребляемость большого количества электроэнергии, узкая направленность технологий – только утилизация снега или только генерация тепловой энергии, сложность устройства, лежащее в наличии большого количества комплектующих компонентов, таких как ИК-излучатели и другие подобные устройства.

    • Страницы
    • 1
    • 2


  • ...После более чем столетия нескончаемых усовершенствований двигатель внутреннего сгорания все еще имеет коэффициент полезного действия около 16%. КПД всех тепловых двигателей ограничено циклом Карно. Теоретически, даже при идеальных условиях тепловой двигатель, используемый для приведения в движение автомобиля или электрогенератора, не может преобразовать всю тепловую энергию в механическую. Некоторая часть тепла теряется. В двигателе внутреннего сгорания тепло подается от источника с высокой температурой (Т1), часть энергии преобразуется в механическую и оставшаяся часть выбрасывается при низкой температуре (Т2). Чем больше разность между этими температурами, тем выше КПД двигателя...

    • Страницы
    • 1
    • 2
    • 3


  • ...В современных ВЭС воплощено множество технических идей, отвечающих последним достижениям науки. Вот далеко не полный перечень уникальных систем и механизмов, обеспечивающих эффективную и безопасную работу ветроэлектростанций: система динамического изменения угла атаки (изменяет угол заклинивания лопастей, удерживая тем самым нужный угол атаки); система динамического регулирования скорости вращения ветроколеса в зависимости от нагрузки и скорости ветра (выбирает оптимальный режим работы); система управления рысканием  — электронный флюгер (поворачивает гондолу с ВЭУ по особому закону с учетом доминирующего направления ветра, его порывов и турбуленции); система оперативного регулирования магнитного скольжения асинхронного генератора (используются усовершенствованные асинхронные генераторы с ротором «беличья клетка»)...

    • Страницы
    • 1
    • 2
    • 3
    • 4
    • 5


  • ...В 1949 году О. А. Лаврентьев предложил плазменное решение проблемы синтеза легких ядер в виде электростатической ловушки, однако на тот момент плазма оказалась наименее исследованным состоянием вещества и каждый раз преподносила новые «сюрпризы». Как правило, эти неприятные «подарки» представляли различного рода неустойчивости, приводившие к срыву необходимых режимов работы установок. Осуществление в 1951 году неуправляемой термоядерной реакции в земных условиях в ходе испытательного взрыва водородной бомбы стимулировало проведение исследований, связанных с управляемым термоядерным синтезом (УТС), как источником энергии. Систематические исследования проблемы УТС начались примерно одновременно в Англии, СССР и США в обстановке глубочайшей секретности, так как предполагалось, что их результаты могут найти применение в военных целях. Такие исследования, постепенно приближая решение задачи УТС, привели к развитию целого ряда «побочных» плазменных технологий, которые используются сейчас повсеместно.

    • Страницы
    • 1
    • 2
    • 3


  • Многие ученые считают, что единственным масштабным и долговременным решением надвигающейся энергетической проблемы, одновременно удовлетворяющей условиям энергетической эффективности и экологической безопасности, является термоядерный синтез на базе использования лунного изотопа элемента гелия.
    Страна, которая опередит другие в освоении Луны и добычи гелия-3, станет лидером в мировой экономике, считает академик Эрик Галимов.