Проект HIPPARCOS

Вс, 07/20/2014 - 20:05

Радиоинтерферометр Калифорнийского технологического института

Калязинская радиоастрономическая обсерватория Астрокосмического центра Физического института им. П.Н. Лебедева РАН

Тестирование систем аппарата HIPPARCOS

Звездный глобус Hipparcos изображает небесную сферу, которая была впервые рассмотрена спутником Hipparcos как единое целое. Это проекция ночного неба на икосаэдр (многогранник с 20 треугольными гранями)

В августе 1989 года с космодрома Куру ракетой-носителем Ариана 4 был запущен на орбиту вокруг Земли искусственный спутник HIPPARCOS. Название этого аппарата напоминает имя известного древнегреческого астронома Гиппарха (II в. до н.э.), открывшего явление прецессионного движения оси вращения Земли и предложившего первую фотометрическую шкалу измерения блеска звезд. Отдавая дань уважения Гиппарху, специалисты из Европейского Космического Агентства дали своему спутнику имя, которое они составили из первых букв полного названия научного проекта: HIgh Precision PARarallax COllecting Satellite — «Спутник для получения высокоточных параллаксов». Космический аппарат просуществовал на орбите 37 месяцев, и за это время он провел миллионы измерений звезд. В результате их обработки появились на свет два звездных каталога. Первый из них — HIPPARCOS. Он содержит измеренные с ошибкой порядка одной тысячной угловой секунды координаты, собственные движения и параллаксы для 118218 звезд. Такая точность для звезд достигнута в астрометрии впервые. Второй каталог получил название TYCHO в честь датского астронома Тихо Браге (1546-1601). В этом каталоге приводятся несколько менее точные сведения для 1 058 332 звезд. Создание этих двух каталогов ознаменовало рождение нового направления — космической астрометрии.

Зачем это нужно?

Чтобы ответить на этот вопрос, необходимо поговорить о том, для чего нужны звездные каталоги вообще. В астрономии каталоги разделяют на астрофизические и астрометрические. В астрофизических каталогах можно найти сведения о различных объектах: планетарных туманностях, переменных звездах, галактиках и т.д. Основная информация, содержащаяся в астрометрических каталогах, – это точные координаты звезд и скорости их изменения (так называемые собственные движения звезд). Эти данные нужны для построения системы отсчета на небесной сфере. В тех случаях, когда известны и расстояния до звезд, можно получить систему отсчета не только на сфере, но и в пространстве. Построение системы отсчета, согласованной с принятой физической теорией пространства и времени, и является основной задачей астрометрии.

Лучшие телескопы для наблюдения за ночным небом - в магазине "Планетарий". Зайдите на сайт http://planetarium.ru и убедитесь в этом сами.

Эпоха классической астрометрии

Для решения этой задачи в свое время были созданы крупнейшие обсерватории мира: Гринвичская, Парижская, Пулковская, Военно-Морская обсерватория США и др. Регулярные наблюдения, проводимые на инструментах этих обсерваторий, позволили построить целые поколения фундаментальных каталогов звезд, реализующих собой инерциальную систему отсчета. При этом была принята следующая схема: наиболее точная система строилась на сравнительно небольшом количестве звезд (в последнем фундаментальном каталоге FK5 Basic содержалось всего 1535 звезд), а затем эта первичная система воспроизводилась, хотя и с меньшей точностью, на существенно большее количество звезд (так, каталог PPM распространяет систему FK5 приблизительно на 370 тысяч звезд). Так или иначе, но координаты звезд в этих каталогах реализовывали нужную систему отсчета, в которой можно было изучать тонкие особенности вращения Земли, получать координаты тел солнечной системы и строить теории их движения, выводить значения астрономических постоянных и т.д. В свою очередь, анализ собственных движений звезд позволил обнаружить движение Солнца в пространстве, подтвердить факт вращения Галактики и поставить вопрос о существовании Местной системы звезд. Однако решение этих задач требовало все более и более точных данных о возможно большем количестве звезд. Тем не менее в середине нашего столетия стало ясно, что наземные астрометрические наблюдения достигли своего порога точности. Действительно, ошибка одного измерения даже на лучших инструментах составляла величину порядка 0.2 секунды дуги. На пути увеличения точности стали два главных препятствия: дрожание атмосферы, размывающее изображения звезд, и действие силы тяжести, приводящее к деформациям телескопов. Преодолеть эти препятствия удалось только с помощью нетрадиционных методов измерений.

Другие материалы рубрики


  • Варварские наклонности некоторых звезд иногда возмущают. Пока одни отнимают вещество у ближайших тел, другие поступают еще более нагло и жестоко. Они скидывают со звезд газопылевые диски, которые могли бы дать начало новой планетной системе, а то и новым формам жизни. Но не со всех, а лишь с тех, кто решается переступить опасную черту.



  • Однако сторонники потоков воды провели всестороннее исследование гипотезы о жидкой углекислоте и других средах. Были детально рассмотрены практически все ее аспекты и сделаны убедительные выводы. Например, в аккуратной работе Стьюарта и Ниммо, вышедшей в 2002 году, результаты сформулированы следующим образом: «Мы нашли, что ни конденсированный CO2, ни клатраты CO2 не могут быть накоплены в коре Марса в достаточных количествах... Таким образом, мы заключаем, что овраги не могут быть образованы жидким CO2. В свете этих результатов потоки жидкой воды остаются предпочтительным механизмом формирования свежих протоков на поверхности».


  • Эксперты ООН в ежегодных докладах публикуют данные, говорящие, что Землю в перспективе ждет катастрофическое глобальное потепление, обусловленное возрастающими выбросами углекислого газа в атмосферу. Однако наблюдение за Солнцем позволяет утверждать, что в повышении температуры углекислый газ «не виноват» и в ближайшие десятилетия нас ждет не катастрофическое потепление, а глобальное, и очень длительное, похолодание.

    • Страницы
    • 1
    • 2
    • 3
    • 4
    • 5


  • Был ли Большой взрыв началом времени или Вселенная существовала и до него? Лет десять назад такой вопрос казался нелепым. В размышлениях о том, что было до Большого взрыва, космологи видели не больше смысла, чем в поисках пути, идущего от Северного полюса на север. Но развитие теоретической физики и, в частности, появление теории струн заставило ученых снова задуматься о предначальной эпохе.
    Вопрос о начале начал занимать философов и богословов с давних времен. Он переплетается с множеством фундаментальных проблем, нашедших свое отражение в знаменитой картине Поля Гогена «D’ou venons-nous? Que sommes-nous? Ou allons-nous?» («Откуда мы пришли? Кто мы такие? Куда мы идем?»). Полотно изображает извечный цикл: рождение, жизнь и смерть — происхождение, идентификация и предназначение каждого индивидуума. Пытаясь разобраться в своем происхождении, мы возводим свою родословную к минувшим поколениям, ранним формам жизни и прото-жизни, химическим элементам, возникшим в молодой Вселенной, и, наконец, к аморфной энергии, некогда заполнявшей пространство. Уходит ли наше фамильное древо корнями в бесконечность или космос так же не вечен, как и мы?

    • Страницы
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6


  • ...Теперь вы должны быть предельно внимательны. Следующие несколько секунд окажутся решающими, поэтому вы включаете высокоскоростную регистрирующую систему для детальной записи всех приходящих сведений. Через 61 с R3D3 сообщает, что все системы пока функционируют нормально, горизонт - на расстоянии 8000 км и приближается со скоростью 15 тыс. км/с. Проходит 61,6 с. Еще все в порядке, до горизонта осталось 2000 км, скорость - 30 тыс. км/с (или 0,1 скорости света, так что цвет излучения начинает меняться все заметнее). А затем, в течение следующей 0,1 с вы с изумлением замечаете, что излучение из зеленого становится красным, инфракрасным, микроволновым, затем приходят радиоволны и наконец все исчезает. Через 61,7 с все кончено - лазерный луч пропал. R3D3 достиг скорости света и исчез за горизонтом.

    • Страницы
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6


  • Немного найдется произведений, передающих красоту космических объектов, называемых планетарными туманностями. Освещенные изнутри родительской звездой, расцвеченные флуоресцирующими атомами и ионами на фоне космической черноты, газовые структуры кажутся живыми. Ученые дали им прозвища — Муравей, Морская Звезда, Кошачий Глаз...
    Термин «планетарные туманности» — представляющие собой размытые, похожие на облака объекты, видимые только в телескоп — придумал два столетия назад английский астроном Вильям Гершель (William Herschel), исследователь туманностей. Многие из них имеют округлую форму, которая напомнила ученому зеленоватый диск планеты Уран, им же и открытой. К тому же он полагал, что округлые туманности могут быть планетными системами, формирующимися вокруг молодых звезд. Термин прижился, несмотря на то, что действительность оказалась иной: туманности такого типа состоят из газа, сброшенного умирающими звездами. Примерно через 5 млрд. лет Солнце закончит свой космический век изящным выбросом планетарной туманности, что не вполне соответствует теории эволюции звезд — основе, на которой базируется наше понимание космоса. Если звезды рождаются, живут и умирают круглыми, то как же они создают вокруг себя структуры, которые мы видим на фотографиях «Хаббла», подобные Муравью, Морской Звезде или Кошачьему Глазу?

    • Страницы
    • 1
    • 2


  • Существует небольшой шанс, что через 3,34 миллиарда лет Марс столкнется с Землей. Также есть вероятность столкновения Земли и Венеры или Меркурия и Венеры. Меркурий вообще может упасть на Солнце или улететь в межзвездное пространство. Таковы причуды нашей системы, новые тайны которой раскрыли ученые.
    Подробнейшее численное моделирование эволюции орбит в Солнечной системе выполнили профессор Жак Ласкар (Jacques Laskar) и Микаэль Гастино (Mickael Gastineau) из Парижской обсерватории (Observatoire de Paris).
    Долгое время астрономы полагали, что орбиты планет в Солнечной системе стабильны и неизменны. Потом стали появляться сведения, что на заре зарождения системы орбиты ряда планет сильно отличались от нынешних и претерпевали большие изменения, прежде чем все «устоялось».



  • ...Несмотря на то, что идея коллапса кажется простой (при сжатии ядра выделяется энергия гравитационной связи, за счет которой выбрасываются внешние слои вещества), трудно понять процесс в деталях. В конце жизни у звезды с массой более 10 масс Солнца образуется слоеная структура, с глубиной появляются слои все более тяжелых элементов.
    Ядро состоит в основном из железа, а равновесие звезды поддерживается квантовым отталкиванием электронов.
    Но в конце концов масса звезды подавляет электроны, которые вжимаются в атомные ядра, где начинают реагировать с протонами и образовывать нейтроны и электронные нейтрино. В свою очередь, нейтроны и оставшиеся протоны прижимаются друг к другу все сильнее, пока их собственная сила отталкивания не начнет действовать и не остановит коллапс.

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • Давайте вспомним испытание противоспутникового оружия, проведенное 11 января 2007 года Китаем. Почему оно вызвало беспокойство у специалистов космической отрасли? Ведь с 1968-го по 1986-й США и СССР провели свыше 20 таких же испытаний! И с того времени уже было проведено несколько подобных испытаний?! Дело вовсе не в международной безопасности. Или не только в ней.



  • ...Итак, согласно полученным результатам, в конце первой секунды температура достигла 1010 К — это слишком много для того, чтобы могли существовать сложные ядра. Все пространство Вселенной было тогда заполнено хаотически движущимися протонами и нейтронами, вперемешку с электронами, нейтрино и фотонами (тепловым излучением). Ранняя Вселенная расширялась чрезвычайно быстро, так что по прошествии минуты температура упала до 108 К, а спустя еще несколько минут — ниже уровня, при котором возможны ядерные реакции...

    • Страницы
    • 1
    • 2
    • 3
    • 4