Процессы звездообразования

Чт, 06/26/2014 - 17:56

Звезды рождаются в массивных плотных облаках молекулярного водорода, насыщенных пылью, так как только твердые частички и молекулы могут эффективно излучать энергию, возникающую при постепенном сжатии вещества, что позволяет ему охлаждаться и сжиматься дальше. Горячее вещество само по себе не сжимается, а напротив, норовит разлететься в разные стороны, и для образования звезд необходим эффективный механизм охлаждения. Такой имеется только в плотных молекулярных облаках.

Одно такое облако — так называемое околоядерное молекулярное кольцо — существует и в окрестностях Sgr A*. Это образование, открытое еще 25 лет назад, простирается на расстояние от 6 до 25 световых лет от черной дыры — в рамках нашей аналогии оно оказалось бы размером примерно с купол Сенатского дворца. Вероятно, это облако является далеко не первым и не последним в истории галактического центра: молекулярные облака, во множестве путешествующие по Галактике, время от времени должны попадать в окрестности черной дыры и удерживаться там ее гравитацией.

Казалось бы, именно они и могут стать источником звездного изобилия в самом сердце Млечного Пути. Тем не менее расчеты показывали, что звезды в нем рождаться не могут.

Причина в приливных силах, с которыми черная дыра действует на зарождающиеся молодые звезды в облаке. Край зародыша, который смотрит на дыру, она притягивает чуть сильнее, чем противоположный, поскольку сила тяготения ослабевает с расстоянием; в итоге приливная сила пытается разорвать зарождающуюся звезду. В принципе, приливной эффект здесь в несколько миллиардов раз слабее, чем тот, что на воды земных океанов оказывают Солнце и Луна. Однако детальное моделирование показывало, что даже этого напряжения тонко сбалансированный механизм звездообразования не может перенести. Добавляют свой вклад в приливы и обилие массивных звезд, уже находящихся в окрестностях черной дыры.

Похоже, теоретикам от астрономии придется что-то подправить в своих расчетах. Как выяснилось, процесс звездообразования в околоядерном молекулярном кольце не только возможен, но уже идет.

Через несколько сотен тысяч или миллионов лет — совсем небольшой по астрономическим меркам интервал времени — вокруг черной дыры засверкает яркий венец из массивных, ярких и очень молодых звезд.

Группа американских и австралийских астрономов под руководством Фархада Юсефа-Заде из американского Северо-западного университета нашла следы мазерного излучения молекул метилового спирта в нескольких уплотнениях этого кольца. Это верный признак самых первых этапов образования звезд. Работа ученых будет вскоре опубликована в Astrophysical Journal Letters.

Мазеры — это такие же квантовые генераторы когерентного излучения, что и лазеры, только производят они не видимый свет, а радиоволны. Собственно, первые «лазеры», сделанные в СССР Басовым и Прохоровым, а в США — Таунсом с коллегами, были на самом деле мазерами. В них атомы и молекулы, которые каким-то внешним воздействием были переведены в возбужденное состояние, синхронно, друг за другом, переходят в основное состояние, испуская идентичные кванты электромагнитного излучения и побуждая (индуцируя) своих соседей делать то же самое, а главное — в унисон. Благодаря такому созвучию амплитуды волн складываются не случайно, а все в одной фазе, и результирующий сигнал получается очень сильным.

Внешним воздействием, переводящим молекулы в возбужденное состояние, в астрономических условиях являются столкновения между ними. Интенсивность столкновений зависит от плотности и температуры, между которыми должен поддерживаться четкий баланс, что и позволяет по мазерным линиям очень точно диагностировать физическое состояние вещества. Мазерное излучение — надежное свидетельство высокой плотности, которая возникает лишь в окрестностях уже формирующихся звезд. Поэтому ученые уверенно заявляют, что звезды здесь уже стремительно образуются. Внимательно изучив спектры, ученые нашли несколько сгустков в облаке, где скоро появятся яркие светила. При этом новорожденные звезды будут достаточно массивными и ярко осветят окрестности черной дыры.

Более того, внимательное изучение линий синильной кислоты, также присутствующей в составе молекулярного облака и очень удобной для радиоастрономических наблюдений, показало присутствие достаточно сильного звездного ветра. Ветер, по мнению Юсефа-Заде и его коллег, выдувают массивные звезды-младенцы, еще не очистившие своим излучением того кокона, в котором образовались всего несколько десятков тысяч лет назад. Пройдет еще несколько десятков тысячелетий, и эти коконы будут прорваны.

Возможно, еще через некоторое время часть сброшенного вещества доберется и до черной дыры, позволив ей снова ярко засиять, как в далеком прошлом. Впрочем, даже наши потомки никакого впечатляющего небесного зрелища не увидят — центр Галактики надежно скрыт от человеческих глаз облаками пыли. Фейерверк разглядят только радио- и инфракрасные телескопы, которые у последователей современных астрономов, хочется надеяться, будут еще совершеннее.

По современным представлениям, формирование звезды начинается с медленного сжатия наиболее плотных областей облаков молекулярного водорода с примесью других газов и пыли. Пыли в этой смеси немного, но именно она позволяет газу эффективно охлаждаться, играя ключевую роль в звездообразовании: образовываться из горячего газа звезды не могут.

В процессе сжатия облако, как правило, фрагментирует на отдельные части, каждая из которых позднее родит звезду или кратную звездную систему. При сжатии каждого фрагмента выделяется потенциальная гравитационная энергия, которая частично излучается, а частично идет на нагрев формирующегося в центре облака ядра. Молодые предзвездные объекты на этом этапе называют протозвездами. Иногда его разделяют на две стадии — стадию протозвезды и стадию звезды типа T Тельца.

Наличие углового момента вращения относительно центра сжатия приводит к формированию протозвездного диска, за счет которого могут значительно увеличиться темпы аккреции вещества на центральный объект. В какой-то момент температура и давление в центре становятся достаточными для запуска ядерной реакции синтеза гелия из дейтерия — тяжелого изотопа водорода, легко вступающего в ядерную реакцию (именно из дейтерия состоит «горючее» водородных бомб). Резкое увеличение выделения энергии значительно замедляет сжатие центрального объекта.
Позднее температура и плотность в центре оказываются достаточными для запуска реакции синтеза гелия непосредственно из легкого изотопа водорода — протия, который составляет основную долю самого распространенного газа; весь дейтерий к тому моменту в центре уже израсходован. Запуск ядерной реакции превращения основного изотопа водорода в гелий знаменует рождение новой звезды

Другие материалы рубрики


  • Вращаясь вокруг Солнца, инфракрасная обсерватория НАСА ищет следы молодых звезд и галактик, а также межзвездное пространство, в котором они образовались.
    Космический телескоп имеет очевидные преимущества в изучении инфракрасного теплового излучения, которое испускают объекты, слишком холодные, чтобы сиять в спектре видимого света. Атмосфера Земли - постоянная помеха для инфракрасных приборов, поскольку она не только впитывает слабые инфракрасные лучи из космоса, но и сама выделяет их огромное количество.
    В 1979 году НАСА представило инфракрасный космический телескоп SIRTF. Он не стал первым инфракрасным прибором на орбите, но долгое время оставался самым большим.



  • В нашей Галактике за пределами Солнечной системы обнаружено несколько сотен планет. Исследовать их проще и дешевле при помощи автоматических зондов сверхмалого размера. Запускать эти аппараты можно с Земли из электромагнитной пушки, а ускорять и корректировать орбиты будут гравитационные поля встречных звезд.
    Полеты к звездам — любимая тема фантастов и авторов компьютерных игр. Лихо носятся их звездолеты на просторах Галактики! Вот только неясно — как и зачем? Но эти вопросы не очень волнуют любознательных читателей: «как» — это придумают инженеры, а уж «зачем» — вообще неприлично спрашивать. Вы только представьте: новые неизведанные миры, братья по разуму... Разве это неинтересно?!
    Но не все фантазии удается воплотить в жизнь. Романтическая эпоха поиска внеземных цивилизаций, рожденная в начале 1960-х успехами космонавтики и радиоастрономии, к концу столетия почти сошла на нет.



  • Существует небольшой шанс, что через 3,34 миллиарда лет Марс столкнется с Землей. Также есть вероятность столкновения Земли и Венеры или Меркурия и Венеры. Меркурий вообще может упасть на Солнце или улететь в межзвездное пространство. Таковы причуды нашей системы, новые тайны которой раскрыли ученые.
    Подробнейшее численное моделирование эволюции орбит в Солнечной системе выполнили профессор Жак Ласкар (Jacques Laskar) и Микаэль Гастино (Mickael Gastineau) из Парижской обсерватории (Observatoire de Paris).
    Долгое время астрономы полагали, что орбиты планет в Солнечной системе стабильны и неизменны. Потом стали появляться сведения, что на заре зарождения системы орбиты ряда планет сильно отличались от нынешних и претерпевали большие изменения, прежде чем все «устоялось».



  • Этот взрыв потряс не только часть Вселенной, но и земную астрономию! Громадная звезда вдруг стала сверхновой, и ее разорвало на куски с таким шиком, что даже бывалые астрономы заявили, что никогда такого не видали. А ведь должна была вести себя тихо-тихо. Ученые подозревают, что такое разрушительное событие может в любой момент повториться у нас прямо под боком. Возможно, даже завтра. Или прямо сейчас.



  • ...Среди прочих лептонов в 1936 году, среди продуктов взаимодействий космических лучей, был открыт мюон. Он оказался одной из первых известных нестабильных субатомных частиц, которая во всех отношениях, кроме стабильности, напоминает электрон, то есть имеет тот же заряд и спин и участвует в тех же взаимодействиях, но имеет бóльшую массу. Примерно за две миллионные доли секунды мюон распадается на электрон и два нейтрино. На долю мюона приходится значительная часть фонового космического излучения, которое регистрируется на поверхности Земли счетчиком Г. Гейгера...

    • Страницы
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6


  • Космические фонтаны из водяного льда, пара и смеси других веществ, поднимающиеся над равнинами луны Сатурна, давно интригуют специалистов. Не хотят сходиться уравнения, описывающие энергетику этого мира, столь удаленного от Солнца. Однако все встает на свои места, если учесть новое открытие: волнующая активность Энцелада по геологическим меркам — мимолетный эпизод.

    • Страницы
    • 1
    • 2


  • Варварские наклонности некоторых звезд иногда возмущают. Пока одни отнимают вещество у ближайших тел, другие поступают еще более нагло и жестоко. Они скидывают со звезд газопылевые диски, которые могли бы дать начало новой планетной системе, а то и новым формам жизни. Но не со всех, а лишь с тех, кто решается переступить опасную черту.



  • Наблюдая и изучая особенности Млечного Пути, астрономы долгое время не могли понять общую структуру и историю нашей Галактики. До 1920 г. ученые не были уверены, что Галактика — отдельный объект, один из миллиардов подобных. К середине 50-х гг. они наконец составили план Галактики, представляющий собой величественный диск из звезд и газа. В 60-х гг. теоретики считали, что наша Галактика сформировалась на раннем этапе космической истории — по новейшим оценкам, около 13 млрд. лет назад — и с той поры не претерпевала существенных изменений.

    • Страницы
    • 1
    • 2
    • 3
    • 4
    • 5


  • Давайте вспомним испытание противоспутникового оружия, проведенное 11 января 2007 года Китаем. Почему оно вызвало беспокойство у специалистов космической отрасли? Ведь с 1968-го по 1986-й США и СССР провели свыше 20 таких же испытаний! И с того времени уже было проведено несколько подобных испытаний?! Дело вовсе не в международной безопасности. Или не только в ней.



  • Впервые астрономы обнаружили планету вне нашей Солнечной системы, которая является потенциально пригодной для жизни, с температурами подобными земным, сопоставимыми с Землей массой и размером и, вероятно, жидкой водой на поверхности. Что приятно, потенциально обитаемый мир находится всего в двух десятках световых лет от нас. Когда-нибудь люди туда смогут добраться.
    О сенсационной находке рассказала 25 апреля 2007 года международная группа из 11 астрономов (из Швейцарии, Португалии и Франции), которая работала в Чили, на одном из телескопов Европейской южной обсерватории (ESO). Ученые нашли сходную с Землей планету у звезды Gliese 581 — красного карлика, расположенного в созвездии Весы.
    Планета, получившая имя Gliese 581c, обладает массой примерно в 5 масс Земли. Ее диаметр оценивается в 1,5 диаметра нашей планеты, так что сила тяжести на ее поверхности составляет приблизительно 1,6 g. Из-за этих параметров астрономы окрестили ее также «Суперземлей» (super-Earth).
    Ученые предполагают, что эта планета — скалистый мир, сходный с Землей по облику. Как возможный вариант — это может быть ледяная планета. Но в обоих случаях на ее поверхности должна быть жидкая вода. Причем, в случае с ледяным миром — она может быть покрыта океаном полностью.