Процессы звездообразования

Чт, 06/26/2014 - 17:56

Звезды рождаются в массивных плотных облаках молекулярного водорода, насыщенных пылью, так как только твердые частички и молекулы могут эффективно излучать энергию, возникающую при постепенном сжатии вещества, что позволяет ему охлаждаться и сжиматься дальше. Горячее вещество само по себе не сжимается, а напротив, норовит разлететься в разные стороны, и для образования звезд необходим эффективный механизм охлаждения. Такой имеется только в плотных молекулярных облаках.

Одно такое облако — так называемое околоядерное молекулярное кольцо — существует и в окрестностях Sgr A*. Это образование, открытое еще 25 лет назад, простирается на расстояние от 6 до 25 световых лет от черной дыры — в рамках нашей аналогии оно оказалось бы размером примерно с купол Сенатского дворца. Вероятно, это облако является далеко не первым и не последним в истории галактического центра: молекулярные облака, во множестве путешествующие по Галактике, время от времени должны попадать в окрестности черной дыры и удерживаться там ее гравитацией.

Казалось бы, именно они и могут стать источником звездного изобилия в самом сердце Млечного Пути. Тем не менее расчеты показывали, что звезды в нем рождаться не могут.

Причина в приливных силах, с которыми черная дыра действует на зарождающиеся молодые звезды в облаке. Край зародыша, который смотрит на дыру, она притягивает чуть сильнее, чем противоположный, поскольку сила тяготения ослабевает с расстоянием; в итоге приливная сила пытается разорвать зарождающуюся звезду. В принципе, приливной эффект здесь в несколько миллиардов раз слабее, чем тот, что на воды земных океанов оказывают Солнце и Луна. Однако детальное моделирование показывало, что даже этого напряжения тонко сбалансированный механизм звездообразования не может перенести. Добавляют свой вклад в приливы и обилие массивных звезд, уже находящихся в окрестностях черной дыры.

Похоже, теоретикам от астрономии придется что-то подправить в своих расчетах. Как выяснилось, процесс звездообразования в околоядерном молекулярном кольце не только возможен, но уже идет.

Через несколько сотен тысяч или миллионов лет — совсем небольшой по астрономическим меркам интервал времени — вокруг черной дыры засверкает яркий венец из массивных, ярких и очень молодых звезд.

Группа американских и австралийских астрономов под руководством Фархада Юсефа-Заде из американского Северо-западного университета нашла следы мазерного излучения молекул метилового спирта в нескольких уплотнениях этого кольца. Это верный признак самых первых этапов образования звезд. Работа ученых будет вскоре опубликована в Astrophysical Journal Letters.

Мазеры — это такие же квантовые генераторы когерентного излучения, что и лазеры, только производят они не видимый свет, а радиоволны. Собственно, первые «лазеры», сделанные в СССР Басовым и Прохоровым, а в США — Таунсом с коллегами, были на самом деле мазерами. В них атомы и молекулы, которые каким-то внешним воздействием были переведены в возбужденное состояние, синхронно, друг за другом, переходят в основное состояние, испуская идентичные кванты электромагнитного излучения и побуждая (индуцируя) своих соседей делать то же самое, а главное — в унисон. Благодаря такому созвучию амплитуды волн складываются не случайно, а все в одной фазе, и результирующий сигнал получается очень сильным.

Внешним воздействием, переводящим молекулы в возбужденное состояние, в астрономических условиях являются столкновения между ними. Интенсивность столкновений зависит от плотности и температуры, между которыми должен поддерживаться четкий баланс, что и позволяет по мазерным линиям очень точно диагностировать физическое состояние вещества. Мазерное излучение — надежное свидетельство высокой плотности, которая возникает лишь в окрестностях уже формирующихся звезд. Поэтому ученые уверенно заявляют, что звезды здесь уже стремительно образуются. Внимательно изучив спектры, ученые нашли несколько сгустков в облаке, где скоро появятся яркие светила. При этом новорожденные звезды будут достаточно массивными и ярко осветят окрестности черной дыры.

Более того, внимательное изучение линий синильной кислоты, также присутствующей в составе молекулярного облака и очень удобной для радиоастрономических наблюдений, показало присутствие достаточно сильного звездного ветра. Ветер, по мнению Юсефа-Заде и его коллег, выдувают массивные звезды-младенцы, еще не очистившие своим излучением того кокона, в котором образовались всего несколько десятков тысяч лет назад. Пройдет еще несколько десятков тысячелетий, и эти коконы будут прорваны.

Возможно, еще через некоторое время часть сброшенного вещества доберется и до черной дыры, позволив ей снова ярко засиять, как в далеком прошлом. Впрочем, даже наши потомки никакого впечатляющего небесного зрелища не увидят — центр Галактики надежно скрыт от человеческих глаз облаками пыли. Фейерверк разглядят только радио- и инфракрасные телескопы, которые у последователей современных астрономов, хочется надеяться, будут еще совершеннее.

По современным представлениям, формирование звезды начинается с медленного сжатия наиболее плотных областей облаков молекулярного водорода с примесью других газов и пыли. Пыли в этой смеси немного, но именно она позволяет газу эффективно охлаждаться, играя ключевую роль в звездообразовании: образовываться из горячего газа звезды не могут.

В процессе сжатия облако, как правило, фрагментирует на отдельные части, каждая из которых позднее родит звезду или кратную звездную систему. При сжатии каждого фрагмента выделяется потенциальная гравитационная энергия, которая частично излучается, а частично идет на нагрев формирующегося в центре облака ядра. Молодые предзвездные объекты на этом этапе называют протозвездами. Иногда его разделяют на две стадии — стадию протозвезды и стадию звезды типа T Тельца.

Наличие углового момента вращения относительно центра сжатия приводит к формированию протозвездного диска, за счет которого могут значительно увеличиться темпы аккреции вещества на центральный объект. В какой-то момент температура и давление в центре становятся достаточными для запуска ядерной реакции синтеза гелия из дейтерия — тяжелого изотопа водорода, легко вступающего в ядерную реакцию (именно из дейтерия состоит «горючее» водородных бомб). Резкое увеличение выделения энергии значительно замедляет сжатие центрального объекта.
Позднее температура и плотность в центре оказываются достаточными для запуска реакции синтеза гелия непосредственно из легкого изотопа водорода — протия, который составляет основную долю самого распространенного газа; весь дейтерий к тому моменту в центре уже израсходован. Запуск ядерной реакции превращения основного изотопа водорода в гелий знаменует рождение новой звезды

Другие материалы рубрики


  • Однако сторонники потоков воды провели всестороннее исследование гипотезы о жидкой углекислоте и других средах. Были детально рассмотрены практически все ее аспекты и сделаны убедительные выводы. Например, в аккуратной работе Стьюарта и Ниммо, вышедшей в 2002 году, результаты сформулированы следующим образом: «Мы нашли, что ни конденсированный CO2, ни клатраты CO2 не могут быть накоплены в коре Марса в достаточных количествах... Таким образом, мы заключаем, что овраги не могут быть образованы жидким CO2. В свете этих результатов потоки жидкой воды остаются предпочтительным механизмом формирования свежих протоков на поверхности».


  • Наблюдения на рентгеновской обсерватории «Чандра» показали наличие большого числа маломассивных рентгеновских двойных звезд в эллиптических и линзовидных галактиках, а также в балджах — центральных сферических компонентах — дисковых галактик. Распределение источников по светимостям хорошо описывается двумя компонентами, граница между которыми соответствует светимости порядка (2-3) 1038 эрг/с. Т.к. эта величина примерно соответствует максимальной (т.н. Эддингтоновской) светимости объекта с массой 1.4 Мо, то возможно, что более мощные источники являются аккрецирующими черными дырами, а менее мощные — нейтронными звездами. Т.о. с некоторой долей уверенности можно говорить, что мы видим в галактиках ранних типов — эллиптических и линзовидных — тесные двойные системы как с черными дырами (самые яркие источники), так и с нейтронными звездами (менее яркие).



  • Давайте вспомним испытание противоспутникового оружия, проведенное 11 января 2007 года Китаем. Почему оно вызвало беспокойство у специалистов космической отрасли? Ведь с 1968-го по 1986-й США и СССР провели свыше 20 таких же испытаний! И с того времени уже было проведено несколько подобных испытаний?! Дело вовсе не в международной безопасности. Или не только в ней.



  • ...Итак, согласно полученным результатам, в конце первой секунды температура достигла 1010 К — это слишком много для того, чтобы могли существовать сложные ядра. Все пространство Вселенной было тогда заполнено хаотически движущимися протонами и нейтронами, вперемешку с электронами, нейтрино и фотонами (тепловым излучением). Ранняя Вселенная расширялась чрезвычайно быстро, так что по прошествии минуты температура упала до 108 К, а спустя еще несколько минут — ниже уровня, при котором возможны ядерные реакции...

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • Был ли Большой взрыв началом времени или Вселенная существовала и до него? Лет десять назад такой вопрос казался нелепым. В размышлениях о том, что было до Большого взрыва, космологи видели не больше смысла, чем в поисках пути, идущего от Северного полюса на север. Но развитие теоретической физики и, в частности, появление теории струн заставило ученых снова задуматься о предначальной эпохе.
    Вопрос о начале начал занимать философов и богословов с давних времен. Он переплетается с множеством фундаментальных проблем, нашедших свое отражение в знаменитой картине Поля Гогена «D’ou venons-nous? Que sommes-nous? Ou allons-nous?» («Откуда мы пришли? Кто мы такие? Куда мы идем?»). Полотно изображает извечный цикл: рождение, жизнь и смерть — происхождение, идентификация и предназначение каждого индивидуума. Пытаясь разобраться в своем происхождении, мы возводим свою родословную к минувшим поколениям, ранним формам жизни и прото-жизни, химическим элементам, возникшим в молодой Вселенной, и, наконец, к аморфной энергии, некогда заполнявшей пространство. Уходит ли наше фамильное древо корнями в бесконечность или космос так же не вечен, как и мы?

    • Страницы
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6


  • ...Уходить от Солнца на еще большее расстояние, по подсчетам швейцарского астрофизика, нет смысла. Потому что в стадии красного гиганта Солнце пробудет всего несколько миллионов лет, а затем станет снова быстро сжиматься, превратится в белого карлика и начнет деградировать как источник энергии. И тогда Земле, чтобы получать достаточное количество тепла и света, понадобится орбита меньшая, чем сейчас у Меркурия. Но при таком приближении к светилу силы притяжения довольно скоро остановят вращение Земли вокруг ее оси. Планета будет повернута к Солнцу всегда одной стороной. Значит, жизнь на Земле быстро погибнет: на ночной стороне — от тьмы и холода, а на освещенной — от жары и губительного для всего живого ультрафиолетового и рентгеновского излучения, идущего от белого карлика.

    • Страницы
    • 1
    • 2
    • 3


  • В нашей Галактике за пределами Солнечной системы обнаружено несколько сотен планет. Исследовать их проще и дешевле при помощи автоматических зондов сверхмалого размера. Запускать эти аппараты можно с Земли из электромагнитной пушки, а ускорять и корректировать орбиты будут гравитационные поля встречных звезд.
    Полеты к звездам — любимая тема фантастов и авторов компьютерных игр. Лихо носятся их звездолеты на просторах Галактики! Вот только неясно — как и зачем? Но эти вопросы не очень волнуют любознательных читателей: «как» — это придумают инженеры, а уж «зачем» — вообще неприлично спрашивать. Вы только представьте: новые неизведанные миры, братья по разуму... Разве это неинтересно?!
    Но не все фантазии удается воплотить в жизнь. Романтическая эпоха поиска внеземных цивилизаций, рожденная в начале 1960-х успехами космонавтики и радиоастрономии, к концу столетия почти сошла на нет.



  • Никто пока не определил, всякая ли звезда в Галактике окружена другими планетами, либо Солнце является исключением из данного правила. За последние 9 лет астрономы при наблюдении за колебательными движениями звезд, которые вызваны воздействием, оказываемым на них планетами, обнаружили сотни таких планет. Но этот метод помогает фиксировать лишь самые массивные планеты, находящиеся неподалеку от звезд. Так можно обнаружить Юпитер, Сатурн в Солнечной системе, но мелкие тела (кометы, астероиды, планеты земного типа), делающие Солнечную систему такой разнообразной, астрономы бы не смогли найти, используя эти методы наблюдения.

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • ...В начале 70-х годов появилось предложение объединить бозоны и фермионы в единую теорию, что, мягко говоря, среди ученых вызвало недоумение, ведь столь различны по своим свойствам эти две группы частиц. Тем не менее, оно возможно, если обратиться к симметрии, более широкой, нежели симметрия Лоренца — Пуанкаре, лежащая в основе теории относительности. Математическая суперсимметрия соответствует извлечению квадратного корня из симметрии Лоренца — Пуанкаре, физически же она соответствует превращению фермиона в бозон и наоборот. Разумеется, в реальном мире невозможно проделать такую операцию, тем не менее, операцию суперсимметрии можно сформулировать математически и можно построить теории, включающие суперсимметрии...

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • Этот взрыв потряс не только часть Вселенной, но и земную астрономию! Громадная звезда вдруг стала сверхновой, и ее разорвало на куски с таким шиком, что даже бывалые астрономы заявили, что никогда такого не видали. А ведь должна была вести себя тихо-тихо. Ученые подозревают, что такое разрушительное событие может в любой момент повториться у нас прямо под боком. Возможно, даже завтра. Или прямо сейчас.