Смерть звезд

Втр, 04/01/2014 - 18:20

Испепеленная красным гигантом — состарившимся Солнцем, — в будущем Земля станет удобным местом для наблюдения за рождающейся планетарной туманностью

СТРОЕНИЕ КОШАЧЬЕГО ГЛАЗА


КОГДА УМИРАЕТ ЗВЕЗДА...



Немного найдется произведений, передающих красоту космических объектов, называемых планетарными туманностями. Освещенные изнутри родительской звездой, расцвеченные флуоресцирующими атомами и ионами на фоне космической черноты, газовые структуры кажутся живыми. Ученые дали им прозвища — Муравей, Морская Звезда, Кошачий Глаз...
Термин «планетарные туманности» — представляющие собой размытые, похожие на облака объекты, видимые только в телескоп — придумал два столетия назад английский астроном Вильям Гершель (William Herschel), исследователь туманностей. Многие из них имеют округлую форму, которая напомнила ученому зеленоватый диск планеты Уран, им же и открытой. К тому же он полагал, что округлые туманности могут быть планетными системами, формирующимися вокруг молодых звезд. Термин прижился, несмотря на то, что действительность оказалась иной: туманности такого типа состоят из газа, сброшенного умирающими звездами. Примерно через 5 млрд. лет Солнце закончит свой космический век изящным выбросом планетарной туманности, что не вполне соответствует теории эволюции звезд — основе, на которой базируется наше понимание космоса. Если звезды рождаются, живут и умирают круглыми, то как же они создают вокруг себя структуры, которые мы видим на фотографиях «Хаббла», подобные Муравью, Морской Звезде или Кошачьему Глазу?

И смерть приходит за ними

В течение ХХ в. астрономы поняли, что звезды четко делятся по типу смерти на два класса. Если масса звезды при рождении превышала восемь масс Солнца, то в конце жизни звезда внезапно взрывается как сверхновая, а менее массивные из них умирают долго и проводят свои последние годы, спазматически перерабатывая остатки топлива.
В недрах такой звезды на протяжении почти всей ее жизни термоядерные реакции сжигают водород, а затем гелий. Когда ядерное горение перемещается к свежему веществу, в окружающую ядро оболочку, то звезда раздувается в так называемый красный гигант. Как только водород сожжен, наступает очередь гелия. Его горение происходит неустойчиво, и звезда теряет стабильность. Ее сильные колебания вместе с давлением излучения раздувают слабо связанные поверхностные слои, создавая планетарную туманность.
Начиная с VIII в. астрономы обнаружили и занесли в каталоги почти 1500 планетарных туманностей, а еще 10 тыс. их могут скрываться за плотными пылевыми облаками Галактики. В то время как сверхновые вспыхивают в Млечном Пути лишь раз в несколько столетий, планетарные туманности рождаются каждый год. Конечно, сверхновые более зрелищны, но их остатки неприглядны и хаотичны, им недостает симметрии и изящества туманностей.

Планетарные туманности не столь уж легки и спокойны, они массивные и бурные: масса каждой — около трети солнечной и включает почти все оставшееся несожженным ядерное топливо звезды.

В начальной стадии слабо связанные внешние слои звезды покидают ее со скоростью 10-20 км/с; этот относительно медленный ветер уносит большую часть массы туманности. Все сильнее обнажая ядро, звезда меняет свой цвет от апельсинового к желтому, затем к белому и наконец — голубому. Когда температура ее поверхности становится выше 25000 K, она заливает окружающий газ жестким ультрафиолетом, настолько мощным, что он разрывает молекулы и лишает их атомы электронов. Звездный ветер уносит все меньше массы со все большей скоростью. Спустя 100 тыс. — 1 млн. лет, в зависимости от начальной массы звезды, процесс прекращается, и от светила остается чрезвычайно плотный и горячий белый карлик — «тлеющий уголек», сжатый гравитацией в шарик размером с Землю.

Поскольку предполагалось, что силы, отталкивающие вещество от умирающих звезд, сферически симметричны, то астрономы до 1980-х гг. представляли планетарные туманности как расширяющиеся сферические пузыри. Однако с тех пор представления изменились.

Рассекая тьму

Еще в 1978 г. было замечено, что жизнь планетарных туманностей не так проста: ультрафиолетовые наблюдения показали, что умирающие звезды продолжают терять вещество и после того, как они сбросили свои внешние слои. Разреженный поток газа уносится со скоростью 1000 км/с, т.е. в 100 раз быстрее более плотного потока, сброшенного ранее.
Сан Куок (Sun Kwok) из Университета Калгари, Кристофер Пертон (Ch.R. Purton) из Доминьонской радио-астрофизической обсерватории Канады и Пим Фицджеральд (M.P. Fitzgerald) из Университета Ватерлоо разработали модель звездного ветра: когда быстрые потоки догоняют и таранят более медленные, они, подобно бульдозеру, уплотняют перед собой слой газа. Оболочка из сжатого газа окружает почти пустую, но очень горячую полость, и постепенно быстрый поток очищает все больший объем.
Модель взаимодействующих звездных ветров подходит для сферических или почти сферических планетарных туманностей. Но в 1980-е гг. наблюдатели выяснили, что сферические туманности очень редки, вероятно, их не более 10%. Большинство же имеет вытянутую или яйцеобразную форму, а некоторые состоят из двух пузырей, расположенных по бокам от умирающей звезды. Астрономы называют их биполярными.

Вместе с Винсентом Икке (V. Icke) и Гаррелтом Меллемой (G. Mellema) из Лейденского университета в Нидерландах мы развили концепцию взаимодействующих ветров. Представим, что медленные потоки сначала формируют плотный тор, вращающийся в плоскости экватора звезды, который отклоняет звездный ветер в полярном направлении, формируя эллиптическую туманность. Если тор очень плотный и компактный, то возникают туманности типа Песочных часов.
Модель воспроизводила все изображения, полученные к 1993 г. Компьютерные расчеты показали, что идея в основе верна, а новые наблюдения подтвердили, что медленные потоки вокруг экватора звезды более плотные.

Однако наша радость была недолгой. В 1994 г. «Хаббл» получил первое четкое изображение планетарной туманности Кошачий Глаз (NGC 6543), открытой Гершелем. Один из ее двух пересекающихся эллипсов — тонкая оболочка, окружающая овальную полость, — соответствовали модели. Но никто не мог предположить, что туманность будет окружена клочковатыми красными областями. Еще более странными казались полосы вне туманности, похожие на струи. Наша модель взаимодействующих ветров в лучшем случае верна лишь частично.

Когда Солнце состарится, оно раздуется до размера нынешней орбиты Земли, заставив Меркурий и Венеру сгореть, подобно гигантским метеорам. Земля избежит такой участи, поскольку Солнце, потеряв часть своей массы, ослабит притяжение, и наша планета перейдет на новую, более удаленную орбиту. Солнце, как красный монстр, заполнит все небо. Когда один его край будет скрываться на западе, другой уже начнет восходить на востоке. Более холодное, чем сегодня (2000 K, а не 5800 K), оно все равно нагреет нашу планету.
Земля станет свидетелем формирования планетарной туманности как бы изнутри. Солнце сбросит свои внешние слои, колоссально усилив современный солнечный ветер. Постепенно «красный бегемот» разденется до ядра, которое превратится в белый карлик. Освещенные его голубым светом, предметы на Земле будут отбрасывать резкие и черные как смоль тени. Восходы и закаты крохотного светила станут мгновенными. Мощное ультрафиолетовое излучение карлика разрушит все молекулярные связи, камень превратится в плазму, которая окутает планету жутким переливающимся туманом. Теряя излучение, белый карлик постепенно остынет и потухнет. Вскоре остынет и планета. Так погибнет наш мир — сначала в огне, а затем во льду.


Скат (Hen3-1357) — самая молодая из планетарных туманностей, зародившаяся лишь 20 лет назад. На ее форму влияют звезда-соседка и газовый фактор

Туманность Жук (NGC6302). Центральная звезда туманности окружена плотным, запыленным и насыщенным углеродом тором

Туманность Муравей (Menzel 3). Центральная звезда выбрасывает газ со скоростью 1000 км/с

Туманность Одуванчик (NGC 6751). Эллиптическая планетарная туманность. Красным, зеленым и голубым показана соответственно слабая, умеренная и сильная ионизация газа

Туманность Яйцо (CRL 2688). Центральная звезда как прожектор освещает концентрические пылевые оболочки, протянувшиеся более чем на 0,1 светового года

Модель взаимодействующих ветров завела нас в тупик

Красивую научную идею не так-то легко отбросить. Сначала мы пытались игнорировать результаты наблюдений, надеясь, что Кошачий Глаз — аномалия. Но не тут-то было: другие изображения с «Хаббла» подтвердили, что в нашем сценарии смерти звезды отсутствуют какие-то важные детали.

Среди планетарных туманностей самые необычные — биполярные. На снимках «Хаббла» они выглядят изысканно: мелкие детали симметрично входят в обе части туманности. Симметрия указывает на то, что вся структура рождалась когерентно, в регулярном процессе, действовавшем вблизи поверхности звезд.

Для таких объектов модель взаимодействующих ветров дает прогноз, который легко проверить: выйдя за пределы тора, газ должен вытекать наружу с постоянной скоростью, которая создает заметное доплеровское смещение в его спектре. К сожалению, такое испытание модель не выдерживает. В 2000 г. Романо Корради (Romano L.M. Corradi), работающий сейчас в Группе телескопов И. Ньютона Института астрофизики на Канарских островах, при помощи телескопа «Хаббл» изучил Южную крабовидную туманность (He2-104). Оказалось, что скорость ее расширения возрастает пропорционально расстоянию от звезды, а наиболее далекий от центра газ с самого начала двигался быстро. Прекрасная туманность, похожая на песочные часы, могла сформироваться в результате извержения из звезды приблизительно 5700 лет назад. Жаль, но модель взаимодействующих ветров, предсказывавшая, что туманность формирует непрерывный поток, оказалась несостоятельной.

Корради и его коллеги обнаружили, что Южная крабовидная туманность на самом деле — две туманности, вложенные друг в друга, как матрешки. Сначала мы предположили, что внутренняя туманность моложе внешней, но наблюдения показали, что скорость расширения обеих туманностей увеличивается с расстоянием одинаково. Похоже, что вся сложная структура сформировалась одновременно примерно 6 тыс. лет назад.

Последний гвоздь в крышку гроба модели взаимодействующих ветров был вбит в конце 1990-х, когда Куок, Рагвендра Сахаи (Raghvendra Sahai), Джон Траугер (John Trauger) из Лаборатории реактивного движения в Пасадине (Калифорния) и Маргарет Мейкснер (Margaret Meixner) из Иллинойского университета опубликовали ряд новых изображений, полученных «Хабблом», — очень молодых планетарных туманностей, на стадии до или сразу после того, как звезда нагрела и ионизировала их. Ожидалось, что объекты будут не столь велики, но в целом похожи на взрослые туманности. Однако и на этот раз мы ошиблись: эмбриональные и юные планетарные туманности оказались чрезвычайно разнообразны. Их многочисленные оси симметрии не удается объяснить одной струей, как в нашей гипотезе. Модель взаимодействующих ветров завела нас в тупик. Как отметили в своей статье 1998 года Сахаи и Траугер, пришло время для поиска новой парадигмы.

Попробуем по-другому

Исследователи заключили, что один из основных факторов — гравитационное поле звезды-компаньона — становится решающим. По крайней мере половина всех светил, которые мы видим на небе, в действительности являются двойными. В большинстве систем компаньоны так далеки друг от друга, что живут независимо. Но у некоторых тесных пар притяжение одной звезды может значительно отклонить вещество, вытекающее из другой. Доля таких пар как раз соответствует доле биполярных объектов среди планетарных туманностей.

Согласно сценарию, предложенному Марио Ливио (Mario Livio) из Института космического телескопа и Ноамом Сокером (Noam Soker) из Института «Технион» (Израиль), компаньон захватывает вещество, оттекающее от умирающей звезды. В системе, где размер орбит меньше, чем у Меркурия, а орбитальный год измеряется земными сутками, такой обмен сложен. К моменту, когда вещество умирающей звезды достигает компаньона, последний стремительно перемещается по своей орбите. Вещество, оттянутое приливной силой от рыхлой умирающей звезды, образует хвост, тянущийся за более плотной звездой-компаньоном, и образует плотный толстый диск, обращающийся вокруг компаньона. Моделирование показывает, что компаньон, находящийся на столь же далекой, как у Нептуна, орбите, может окружить себя аккреционным диском.

Раздуваясь, умирающая звезда способна проглотить своего компаньона вместе с диском. Оказавшись на спиральной орбите в теле большей звезды, они разрушают ее изнутри. При этом вытекающие потоки формируют изогнутые струи. Постепенно компаньон погружается в звезду и наконец сливается с ее ядром, а выброс вещества прекращается. Возможно, поэтому некоторые туманности выглядят так, будто бы его приток в них внезапно прекратился.

Магнитное управление

Звезда-соседка по двойной системе, вероятно, не единственный «скульптор» планетарной туманности. Другим игроком может быть мощное магнитное поле самой звезды или диска, окружающего звезду-соседку. Поскольку газ в космосе ионизован, магнитное поле способно управлять его движением. Сильные поля действуют как упругие резиновые нити, направляя газовые потоки.
В конце 1990-х гг. Роджер Шевалье (Roger A.Chevalier) и Динг Луо (Ding Luo) из Виргинского университета предположили, что оттекающий звездный ветер уносит петли магнитного поля. Борьба газа с полем может придавать потоку экзотические формы, но, чтобы он мог его захватить, оно с самого начала должно быть довольно слабым, а значит, не может нести ответственность за генерацию ветра.

Как же сильные магнитные поля выбрасывают вещество в космос? Поскольку умирающая звезда бурлит из-за конвекции, связанное с ее ядром магнитное поле вместе с газом поднимается к поверхности. Если ядро вращается быстро, то поле наматывается на него, как пружина, а когда вырывается на поверхность, захватывает и выбрасывает вещество наружу. Подобное может происходить и в замагниченном аккреционном диске. Фактически как звезда, так и диск могут создать ветер. Несовпадение их осей объясняет некоторые странные многополюсные формы у молодых планетарных туманностей. Вместе с Эриком Блэкманом (Eric G. Blackman) из Рочестерского университета, Сином Мэттом (Sean Matt) из Университета Макмастера Адам Франк изучает эти эффекты. Магнитные поля, как и двойные звезды, дают дополнительные силы, способные создать намного большее разнообразие форм, чем это может модель взаимодействующих ветров.
Источники энергии звезд в процессе эволюции затухают, а внешние слои сбрасываются в космос. Фактически теория внутреннего строения и эволюции звезд — одна из самых успешных научных теорий XX столетия, которая объясняет наблюдаемые свойства большинства звезд: их излучение, цвет и даже большинство их причуд. Однако новая информация делает несостоятельными даже лучшие из теорий. Такова природа прогресса. Открытия часто, разрушая старое, позволяют решить наболевшие вопросы и открывают путь к стремительному движению вперед, часто — в неожиданном направлении.

Другие материалы рубрики


  • Наблюдения на рентгеновской обсерватории «Чандра» показали наличие большого числа маломассивных рентгеновских двойных звезд в эллиптических и линзовидных галактиках, а также в балджах — центральных сферических компонентах — дисковых галактик. Распределение источников по светимостям хорошо описывается двумя компонентами, граница между которыми соответствует светимости порядка (2-3) 1038 эрг/с. Т.к. эта величина примерно соответствует максимальной (т.н. Эддингтоновской) светимости объекта с массой 1.4 Мо, то возможно, что более мощные источники являются аккрецирующими черными дырами, а менее мощные — нейтронными звездами. Т.о. с некоторой долей уверенности можно говорить, что мы видим в галактиках ранних типов — эллиптических и линзовидных — тесные двойные системы как с черными дырами (самые яркие источники), так и с нейтронными звездами (менее яркие).



  • Уже очень скоро сверхмассивную черную дыру в центре нашей Галактики украсит красочный венец из молодых и ярких звезд. Следы метилового спирта в огромном газовом кольце вокруг нее означают, что в нем уже формируются массивные звезды. Раньше астрономы думали, что черная дыра образованию звезд может помешать.
    В центрах большинства галактик, особенно крупных, находятся сверхмассивные черные дыры, весящие миллионы и даже миллиарды солнечных масс — куда больше тех, что возникают в конце эволюции звезд. Судя по всему, эти объекты зародились еще в первые сотни миллионов лет после Большого взрыва, породившего нашу Вселенную, и с тех пор лишь росли, постепенно нагуливая массу и освещая свои вселенские окрестности ярким светом активности галактического ядра

    • Страницы
    • 1
    • 2


  • В своей ранней молодости Марс, похоже, подвергся удару, навсегда изменившему облик планеты. Объект размером с Плутон врезался в планету с севера, разделив ее на две половины — низкий север и высокий юг. Крупнейший кратер Солнечной системы сохранился до наших дней.



  • Никто пока не определил, всякая ли звезда в Галактике окружена другими планетами, либо Солнце является исключением из данного правила. За последние 9 лет астрономы при наблюдении за колебательными движениями звезд, которые вызваны воздействием, оказываемым на них планетами, обнаружили сотни таких планет. Но этот метод помогает фиксировать лишь самые массивные планеты, находящиеся неподалеку от звезд. Так можно обнаружить Юпитер, Сатурн в Солнечной системе, но мелкие тела (кометы, астероиды, планеты земного типа), делающие Солнечную систему такой разнообразной, астрономы бы не смогли найти, используя эти методы наблюдения.

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • Теория эволюции звезд основана на диаграмме «спектр-светимость». Спектр звезды связан с температурой ее поверхностных слоев, светимость — это количество световой энергии, излучаемой звездой в единицу времени. По оси абсцисс откладывается последовательность спектральных классов, по оси ординат — светимость. Звезды Галактики изображаются на диаграмме точками. Точки могли бы расположиться как попало, могли бы сгуститься к одной линии. Но они сгущаются к нескольким линиям и областям, из которых выделяются пять. Им соответствуют группы звезд: звезды главной последовательности, субкарлики, красные гиганты, сверхгиганты, белые карлики. Сопоставляя диаграммы «спектр-светимость», составленные для различных звездных скоплений, можно с уверенностью утверждать, что звезды главной последовательности на определенном этапе эволюции превращаются в красные гиганты. Из диаграмм также видно, как это происходит: температура звезды начинает уменьшаться, размеры и светимость, наоборот, увеличиваются. Через некоторое время температура опять начинает расти. Скорость эволюции определяется начальной массой звезды.

    • Страницы
    • 1
    • 2
    • 3


  • Этот взрыв потряс не только часть Вселенной, но и земную астрономию! Громадная звезда вдруг стала сверхновой, и ее разорвало на куски с таким шиком, что даже бывалые астрономы заявили, что никогда такого не видали. А ведь должна была вести себя тихо-тихо. Ученые подозревают, что такое разрушительное событие может в любой момент повториться у нас прямо под боком. Возможно, даже завтра. Или прямо сейчас.



  • Однако сторонники потоков воды провели всестороннее исследование гипотезы о жидкой углекислоте и других средах. Были детально рассмотрены практически все ее аспекты и сделаны убедительные выводы. Например, в аккуратной работе Стьюарта и Ниммо, вышедшей в 2002 году, результаты сформулированы следующим образом: «Мы нашли, что ни конденсированный CO2, ни клатраты CO2 не могут быть накоплены в коре Марса в достаточных количествах... Таким образом, мы заключаем, что овраги не могут быть образованы жидким CO2. В свете этих результатов потоки жидкой воды остаются предпочтительным механизмом формирования свежих протоков на поверхности».


  • ...Итак, согласно полученным результатам, в конце первой секунды температура достигла 1010 К — это слишком много для того, чтобы могли существовать сложные ядра. Все пространство Вселенной было тогда заполнено хаотически движущимися протонами и нейтронами, вперемешку с электронами, нейтрино и фотонами (тепловым излучением). Ранняя Вселенная расширялась чрезвычайно быстро, так что по прошествии минуты температура упала до 108 К, а спустя еще несколько минут — ниже уровня, при котором возможны ядерные реакции...

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • ...Уходить от Солнца на еще большее расстояние, по подсчетам швейцарского астрофизика, нет смысла. Потому что в стадии красного гиганта Солнце пробудет всего несколько миллионов лет, а затем станет снова быстро сжиматься, превратится в белого карлика и начнет деградировать как источник энергии. И тогда Земле, чтобы получать достаточное количество тепла и света, понадобится орбита меньшая, чем сейчас у Меркурия. Но при таком приближении к светилу силы притяжения довольно скоро остановят вращение Земли вокруг ее оси. Планета будет повернута к Солнцу всегда одной стороной. Значит, жизнь на Земле быстро погибнет: на ночной стороне — от тьмы и холода, а на освещенной — от жары и губительного для всего живого ультрафиолетового и рентгеновского излучения, идущего от белого карлика.

    • Страницы
    • 1
    • 2
    • 3


  • Невиданный успех фильма «Аватар» о событиях на экзопланете Пандора на самом деле может быть не такой уж и фантастикой. По крайней мере, обнаружение новых планет в других звездных системах дает нам надежды на то, что мы на самом деле увидим причудливых инопланетных существ.
    Фантастика зачастую является таковой лишь для определенной эпохи, и с развитием научно-технического прогресса она становится реальностью. Вот и «Аватар» не зря был снят, точнее, смонтирован именно сейчас — ведь еще десять-пятнадцать лет назад подобное казалось уж больно нереальным. Примерно, как обнаружение живого динозавра.
    Современные астрономы уже не отрицают, что где-то там, в других галактиках или даже в нашем родном Млечном пути, есть жизнь. Завлабораторией астроинформатики Главной астрономической обсерватории НАН Украины Ирина Вавилова так и говорит: «Считаю, что она существует. В форме простейших организмов — так точно».

    • Страницы
    • 1
    • 2