Солнце и климат

Втр, 10/28/2014 - 22:13

Рис. 1. Вариации солнечной постоянной за период с 1978 по 2008 год (жирная линия) и ее двухвековой компоненты (штриховая линия), определенные нами. Отдельные кратковременные выбросы вверх обусловлены прохождением факельных полей по диску Солнца, а вниз — прохождением группы пятен

Рис. 2. Вариации солнечной постоянной (а) и изменение среднемесячных значений относительного числа солнечных пятен (б) с 1978 года

Рис. 3. Вариации солнечной постоянной с использованием реконструированных данных до 1978 года и пятнообразовательной активности Солнца с 1611 года и прогнозируемые нами их изменения после 2008 года (пунктирные линии)

Рис. 4. Зависимость продолжительности 11-летних циклов пятнообразовательной активности Солнца (Р) от фазы двухвекового цикла (х — 23-й цикл). По оси ординат отложена продолжительность «коротких» циклов, по оси абсцисс фаза двухвекового цикла



Эксперты ООН в ежегодных докладах публикуют данные, говорящие, что Землю в перспективе ждет катастрофическое глобальное потепление, обусловленное возрастающими выбросами углекислого газа в атмосферу. Однако наблюдение за Солнцем позволяет утверждать, что в повышении температуры углекислый газ «не виноват» и в ближайшие десятилетия нас ждет не катастрофическое потепление, а глобальное, и очень длительное, похолодание.

Жизнь на Земле полностью зависит от солнечного излучения — основного источника энергии для всех природных процессов. Долгое время считалось, что светимость Солнца никогда не меняется. Поэтому полное количество энергии, ежесекундно поступающей от него на площадку в один квадратный метр за пределами атмосферы на среднем расстоянии Земли от Солнца (149 597 892 км), назвали астрономической солнечной постоянной.

Вплоть до конца 1978 года не было возможности надежно измерить точную величину солнечной постоянной, однако по косвенным данным — достоверно установленным глубоким изменениям климата Земли за прошедшие тысячелетия — приходится сомневаться в постоянстве величины солнечной постоянной.

В середине XIX века немецкий и швейцарский астрономы Генрих Швабе и Рудольф Вольф установили, что число пятен на поверхности Солнца периодически изменяется, убывая от максимума к минимуму, а затем снова возрастая за время порядка 11 лет. Вольф ввел индекс относительного числа солнечных пятен (XV) в виде суммы удесятеренного числа групп пятен и общего числа пятен во всех группах. Это число регулярно определяют с 1849 года, а по материалам профессиональных астрономов и наблюдений любителей (достоверность которых невысока) Вольф сумел восстановить его среднемесячные значения с 1749 года и среднегодовые с 1700 года. В настоящее время этот ряд продолжен до 1611 года. Одиннадцатилетней цикличностью обладают и другие связанные с появлением и развитием групп пятен проявления активности Солнца: изменения доли его поверхности, занятой факелами, частота возникновения вспышек и другие явления в его хромосфере и короне.

Проанализировав многолетние данные о числе солнечных пятен, английский астроном Уолтер Маундер в 1893 году пришел к выводу, что с 1645 по 1715 год на Солнце их не было вообще. За 30 лет этого маундеровского минимума астрономы насчитали только около 50 пятнышек, в то время как обычно за это время на солнечном диске их возникает до 50 тысяч. Сейчас установлено, что подобные минимумы образования пятен неоднократно имели место в прошлом. Именно на маундеровский минимум пришлась наиболее холодная фаза глобального похолодания климата в Европе и в других частях света за последнее тысячелетие, отмечавшегося в XIV-XIX веках (так называемый малый ледниковый период).
Поиск зависимости глубоких изменений климата в прошлом от явлений на Солнце привел к необходимости исследовать связь между периодами глобальных изменений земного климата и соответствующими значительными изменениями уровня солнечной активности, поскольку относительное число пятен — единственный показатель, который известен за длительный промежуток времени.

Другие материалы рубрики


  • ...В начале 70-х годов появилось предложение объединить бозоны и фермионы в единую теорию, что, мягко говоря, среди ученых вызвало недоумение, ведь столь различны по своим свойствам эти две группы частиц. Тем не менее, оно возможно, если обратиться к симметрии, более широкой, нежели симметрия Лоренца — Пуанкаре, лежащая в основе теории относительности. Математическая суперсимметрия соответствует извлечению квадратного корня из симметрии Лоренца — Пуанкаре, физически же она соответствует превращению фермиона в бозон и наоборот. Разумеется, в реальном мире невозможно проделать такую операцию, тем не менее, операцию суперсимметрии можно сформулировать математически и можно построить теории, включающие суперсимметрии...

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • ...Уходить от Солнца на еще большее расстояние, по подсчетам швейцарского астрофизика, нет смысла. Потому что в стадии красного гиганта Солнце пробудет всего несколько миллионов лет, а затем станет снова быстро сжиматься, превратится в белого карлика и начнет деградировать как источник энергии. И тогда Земле, чтобы получать достаточное количество тепла и света, понадобится орбита меньшая, чем сейчас у Меркурия. Но при таком приближении к светилу силы притяжения довольно скоро остановят вращение Земли вокруг ее оси. Планета будет повернута к Солнцу всегда одной стороной. Значит, жизнь на Земле быстро погибнет: на ночной стороне — от тьмы и холода, а на освещенной — от жары и губительного для всего живого ультрафиолетового и рентгеновского излучения, идущего от белого карлика.

    • Страницы
    • 1
    • 2
    • 3


  • Однако сторонники потоков воды провели всестороннее исследование гипотезы о жидкой углекислоте и других средах. Были детально рассмотрены практически все ее аспекты и сделаны убедительные выводы. Например, в аккуратной работе Стьюарта и Ниммо, вышедшей в 2002 году, результаты сформулированы следующим образом: «Мы нашли, что ни конденсированный CO2, ни клатраты CO2 не могут быть накоплены в коре Марса в достаточных количествах... Таким образом, мы заключаем, что овраги не могут быть образованы жидким CO2. В свете этих результатов потоки жидкой воды остаются предпочтительным механизмом формирования свежих протоков на поверхности».


  • Прошло без малого сто лет с того момента, как были открыты космические лучи-потоки заряженных частиц, приходящих из глубин Вселенной. С тех пор сделано много открытий, связанных с космическими излучениями, но и загадок остается еще немало. Одна из них, возможно, наиболее интригующая: откуда берутся частицы с энергией более
    1020 эВ, то есть почти миллиард триллионов электрон-вольт, в миллион раз большей, чем будет получена в мощнейшем ускорителе — Большом адронном коллайдере (LHC)? Какие силы и поля разгоняют частицы до таких чудовищных
    энергий?

    • Страницы
    • 1
    • 2


  • Юпитер называют планетой загадок. В статье высказывается гипотеза о причинах феномена «горячих теней» — наиболее таинственного и малоисследованного процесса, наблюдаемого в атмосфере гигантской планеты.

    • Страницы
    • 1
    • 2
    • 3


  • Невиданный успех фильма «Аватар» о событиях на экзопланете Пандора на самом деле может быть не такой уж и фантастикой. По крайней мере, обнаружение новых планет в других звездных системах дает нам надежды на то, что мы на самом деле увидим причудливых инопланетных существ.
    Фантастика зачастую является таковой лишь для определенной эпохи, и с развитием научно-технического прогресса она становится реальностью. Вот и «Аватар» не зря был снят, точнее, смонтирован именно сейчас — ведь еще десять-пятнадцать лет назад подобное казалось уж больно нереальным. Примерно, как обнаружение живого динозавра.
    Современные астрономы уже не отрицают, что где-то там, в других галактиках или даже в нашем родном Млечном пути, есть жизнь. Завлабораторией астроинформатики Главной астрономической обсерватории НАН Украины Ирина Вавилова так и говорит: «Считаю, что она существует. В форме простейших организмов — так точно».

    • Страницы
    • 1
    • 2


  • Наблюдения на рентгеновской обсерватории «Чандра» показали наличие большого числа маломассивных рентгеновских двойных звезд в эллиптических и линзовидных галактиках, а также в балджах — центральных сферических компонентах — дисковых галактик. Распределение источников по светимостям хорошо описывается двумя компонентами, граница между которыми соответствует светимости порядка (2-3) 1038 эрг/с. Т.к. эта величина примерно соответствует максимальной (т.н. Эддингтоновской) светимости объекта с массой 1.4 Мо, то возможно, что более мощные источники являются аккрецирующими черными дырами, а менее мощные — нейтронными звездами. Т.о. с некоторой долей уверенности можно говорить, что мы видим в галактиках ранних типов — эллиптических и линзовидных — тесные двойные системы как с черными дырами (самые яркие источники), так и с нейтронными звездами (менее яркие).



  • О спонтанном возникновении вещества из пустого пространства говорят как о рождении “из ничего”, которое близко по духу рождению ex nihilo в христианской доктрине. Для физики пустое пространство совсем не “ничего”, а весьма существенная часть Вселенной, а мысль о рождении самого пространства может показаться вообще странной. Однако в каком-то смысле это все время происходит вокруг нас. Расширение Вселенной есть не что иное, как непрерывное “разбухание” пространства. С каждым днем доступная современным телескопам область Вселенной возрастает на 1018 кубических световых лет. Здесь полезна аналогия с резиной. Если упругий резиновый жгут вытянуть, его “становится больше”. Пространство напоминает суперэластик тем, что оно, насколько известно физикам, может неограниченно долго растягиваться не разрываясь. Растяжение и искривление пространства напоминает деформацию упругого тела тем, что “движение” пространства происходит по законам механики точно так же, как и движение обычного вещества. В данном случае это законы гравитации. Квантовая теория в равной мере применима как к веществу, так и к пространству и к времени.
    Действительно, благодаря собственной физической природе Вселенная возбуждает в себе всю энергию, необходимую для “создания” материи — это есть космический бутстрэп (bootstrap — в переводе “зашнуровка”, в переносном смысле — отсутствие иерархии в системе элементарных частиц).



  • Варварские наклонности некоторых звезд иногда возмущают. Пока одни отнимают вещество у ближайших тел, другие поступают еще более нагло и жестоко. Они скидывают со звезд газопылевые диски, которые могли бы дать начало новой планетной системе, а то и новым формам жизни. Но не со всех, а лишь с тех, кто решается переступить опасную черту.



  • В кинокомедии «Карнавальная ночь» один из персонажей — лектор — сообщает: «Есть ли жизнь на Марсе, нет ли жизни на Марсе, науке не известно». С тех пор прошло почти полвека, но это утверждение справедливо и сегодня. Однако не менее справедливо и другое: «Где есть вода — там есть и жизнь». Сегодня с большой долей уверенности можно сказать: вода на Марсе есть. Дело за малым — отыскать там жизнь.