Сверхпроводимость

Пнд, 09/09/2013 - 18:00

Рис. 9. Изображения вихревых структур в сверхпроводниках при
T= 4,2 K (температура жидкого гелия) во внешнем магнитном поле напряженностью 1 эрстед (соответствует индукции 0,0001 Тл). Вихри в монокристалле MgB2 (a) распределены неравномерно, тогда как в монокристалле NbSe2 (b) они образуют абрикосовскую треугольную решетку. Длина масштабной линейки 10 мкм

Однако такая картина перехода вещества из сверхпроводящего в нормальное состояние несколько идеализирована. Она будет наблюдаться, только если в нашем распоряжении находится тонкая пластина или длинный цилиндр, а внешнее поле прикладывается параллельно их осям (на рисунке 5а). В реальности образец не всегда пластина или цилиндр, да и магнитное поле может прикладываться “неправильно”. Например, на рисунке 5b видно, что плотность силовых линий у экватора шара больше, чем у полюсов, а это означает, что и поле там сильнее. Поэтому может случиться так, что значение В внешнего поля будет несколько меньше Вс, но за счет локального уплотнения силовых линий вблизи экватора индукция превысит критическое значение и сверхпроводимость исчезнет, в результате чего в экваториальной области шара образуется резистивный участок.

Состояние в сверхпроводнике 1-го рода, когда сверхпроводящие домены соседствуют в материале с нормальными областями, называется промежуточным. Такое состояние может возникать при значениях индукции приложенного поля, лежащих в интервале (1–D)Bc < B < Bc, где размагничивающий фактор D определяется формой образца. Интервал изменения размагничивающего фактора — от нуля (для длинного цилиндра или тонкой пластины в параллельном поле) до единицы (для плоскопараллельной пластины в случае, когда поле приложено перпендикулярно ее поверхности).

Проникновение магнитного поля в сверхпроводник происходит в виде вихревых “ниток” (рис. 6). Каждая такая нитка имеет вытянутое вдоль направления магнитного поля нормальное (т. е. не сверхпроводящее) ядро цилиндрической формы с диаметром порядка длины когерентности ξ. Через это ядро проходит магнитное поле, поэтому вокруг него возникает кольцо незатухающих вихревых токов (с шириной, приблизительно равной лондоновской глубине λ). Одна вихревая нитка в сверхпроводнике 1-го рода может включать большое количество флюксоидов — квантов магнитного потока, каждый из которых несет в себе поток Φ0 = 2,068•10–15 Вб. Вихри притягиваются друг к другу, и чем меньше расстояние между ними, тем сильнее притяжение. За счет этого они “слипаются”, образуя нормальные домены (как показано на рисунке) макроскопических размеров и не обязательно цилиндрической формы.

Понятие сверхпроводников II рода ввел физик А.А. Абрикосов еще в 1950 г., а в 2003 г. совместно с В.Л. Гинзбургом и Э. Леггетом он получил Нобелевскую премию “За создание теории сверхпроводимости второго рода и теории сверхтекучести жидкого гелия-3”. Эти сверхпроводники характеризуются наличием так называемого смешанного состояния (или шубниковской фазы), в котором внутри сверхпроводника имеется частично проникшее в него магнитное поле. В сверхпроводники 2-го рода магнитное поле также проникает в виде вихревых “ниток”. Но есть существенные отличия от сверхпроводников 1-го рода. Первое: каждый вихрь несет в себе только один флюксоид (см. рис. 7) . Второе: вихри отталкиваются друг от друга (чем ближе, тем сильнее), образуя т. н. вихревую треугольную решетку, которую еще называют абрикосовской (соответственно, и вихри получили название абрикосовских). И третье: у сверхпроводников 2-го рода критических значений индукции внешнего поля два. Проникновение вихрей происходит тогда, когда значение индукции магнитного поля заключено в диапазоне (1–D)Вc1 < В < Вc2.

При В = Вc1(1–D) вихри начинают проникать в материал, а когда В достигает второй критической величины, Вc2 (которая может быть во много раз больше, чем Вc1), они полностью заполняют сверхпроводник, переводя его в нормальное состояние. Важно понимать, что, несмотря на наличие абрикосовских вихрей, в интервале (1–D)Вc1 < В < Вc2 вещество по-прежнему сверхпроводящее, хоть и содержит нормальные области. Такое состояние сверхпроводника 2-го рода называется смешанным.

“Полуторный” род

В 2001 году была открыта сверхпроводимость в дибориде магния, характеризующаяся аномально высокой критической температурой — около 39 К. Как выяснилось, в MgB2 существует сразу два “сорта” куперовских пар (и, соответственно, две энергетические щели), которые взаимодействуют между собой и за счет этого создают столь высокую критическую температуру.

Каждой из двух энергетических щелей Δ1 и Δ2 соответствует своя длина когерентности ξ1, ξ2 и лондоновская глубина проникновения λ1, λ2. Если применить критерий Абрикосова для MgB2, то получится, что для первой щели κ = λ11 ≈ 0,66 < 1/√2, а для второй — κ = λ22 ≈ 3,68 > 1/√2. Получается, что в дибориде магния одновременно “живут” две сверхпроводимости — первого и второго рода.

Другие материалы рубрики


  • Шаровая молния — светящийся шар, который порой возникает при разряде линейной молнии, — одно из самых загадочных атмосферных явлений. Природа шаровой молнии до сих пор неизвестна, хотя первая научная публикация на эту тему — книга «Гром и молния» известного французского физика и астронома Франсуа Араго — была издана еще в 1838 году. Предлагаемая гипотеза — попытка объяснить механизм образования шаровой молнии на основе физики плазмы и газового разряда.

    • Страницы
    • 1
    • 2
    • 3


  • Около 40 лет назад ученый В. Веселаго предположил, что существуют материалы, у которых показатель преломления имеет отрицательную величину. Световые волны в таком веществе могут передвигаться против движения распространения светового луча и вести себя нестандартно. Линзы, которые изготовлены из такого материала, — иметь чуть ли не волшебные характеристики. Но Веселаго в процессе своей работы и многолетних поисков не обнаружил ни одного вещества, имеющего подходящие электромагнитные свойства, у всех исследованных им материалов показатель преломления оказался положительным. Потому о его идее вскоре забыли. Вспомнили о ней только в начале 21 века.

    • Страницы
    • 1
    • 2


  • Известно, что в состав топлива входят такие горючие элементы, как углерод, водород и сера. Поэтому на основе предположения о том, что данные компоненты в топливе имеют вид смеси, можно осуществить подсчёт теплотворной способности данного топлива, как суммы компонентов смеси.



  • Научно-технический прогресс — один из главных рычагов создания материально-технической базы будущего нашей страны, который возможен только на основе своевременного внедрения достижений современной науки путем использования всего арсенала средств, способствующих его ускорению.
    Революционные изменения в технике, на основе обновленных знаний, происходят в последние десятилетия столь стремительно, что часто приходится только удивляться новинкам. Творчество вечно, но, к сожалению, технические идеи часто остаются невостребованными.

    • Страницы
    • 1
    • 2


  • Ответ на вопрос, поставленный в заголовке, кажется очень простым... Действительно, стоит взять любую популярную книгу по авиации и даже некоторые издания, претендующие на роль учебника, как сразу натолкнетесь на уже ставшую хрестоматийной притчу о двух частицах воздуха, бегущих в струйках по крылу и встречающихся на задней кромке...

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • ...Технология плазменных ускорителей развивается семимильными шагами. Многие принципиальные проблемы уже решены, но создание конкретных устройств пока сопряжено с серьезными трудностями. В частности, инженерам еще предстоит повысить эффективность ускорителя (долю энергии ведущего импульса, которая передается ускоряемым частицам), точность настройки пучков (в точке столкновения они должны быть выровнены с точностью до единиц нанометров) и частоту повторения рабочих циклов (количество импульсов, ускоряемых за единицу времени). Плазменные установки могут ускорять и более тяжелые частицы, например, протоны. Однако тут есть одно важное требование: вводимые частицы должны двигаться почти со скоростью света, чтобы не отстать от плазменной волны. Это означает, что энергия ускоряемых протонов должна быть не меньше нескольких ГэВ...

    • Страницы
    • 1
    • 2
    • 3


  • Термин «фотополимер» традиционно связывают со стоматологами, а также с чем-то инновационным и надежным. Первая волна моды на эти материалы, похоже, прошла, но вскоре, очевидно, сменится второй. Пока сдерживающим фактором выступают дороговизна или неразвитость производства компонентов. Но как не раз было в производстве пластмасс, подобные затруднения иногда решаются одним патентом в течение полугода, после чего идет рост популярности материала.

    Теоретические вопросы фотополимеризации композиций изобилуют спецтерминами. Наиболее уместно разделить их на фотосшиваемые и фотополимеризуемые материалы. Фотосшиваемые материалы уже являются полуполимерами (например, эфиры ПВС и коричной кислоты, поливинилциннаматы), для окончательного сшивания которых требуется облучение. Фотополимеризующиеся — как правило, композиции нескольких отверждаемых олигомеров и мономеров, полимеризующихся по классическому механизму при помощи фотоинициаторов или фотоинициируемых групп в своей полимерной цепи.

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • Очевидные успехи в развитии науки и техники в XIX и ХХ веках вызвало в мировом общественном сознании некую эйфорию, уверенность в том, что человек стал властелином Природы, что его знания об устройстве окружающего Мира почти абсолютны, что человек может все. И действительно, изобретение в конце 18 века паровой машины существенно изменило жизнь общества, в значительной мере освободив его от утомительного физического труда, заложило основы современной промышленности и транспорта. Постулирование Исааком Ньютоном на рубеже 17 и 18 веков его трех принципов движения материальных тел и закона всемирного тяготения, создание начал дифференциального исчисления вызвало к жизни целый ряд научных открытий. Трудами нескольких поколений ученых в 18-19 столетиях была построена научная дисциплина, очертившая основы машиностроительной и технологической культуры нашей цивилизации, называемая сегодня теоретической механикой. Далее последовали фундаментальные открытия в области астрономии, физики, химии, получившие выход в различные области технических приложений — металлургию, строительство, транспорт, химическое производство, энергетику, судостроение, электротехнику, проводную и беспроводную связь, военное дело. Быстро развивались биология и медицина.

    • Страницы
    • 1
    • 2
    • 3
    • 4
    • 5


  • В 1905 г. Альберт Эйнштейн предложил частную теорию относительности и опроверг представление о свете как о колебаниях гипотетической среды — эфира. Великий физик утверждал, что, в отличие от звуковых, световые волны могут распространяться в вакууме и для их существования не требуется какой-либо материальной среды. Это справедливо и в общей теории относительности, и в квантовой механике. Вплоть до сегодняшнего дня все экспериментальные данные в масштабах от субъядерного до галактического успешно объясняются названными теориями.
    Тем не менее существует серьезная концептуальная проблема: с позиций современной науки общая теория относительности и квантовая механика несовместимы. Гравитация, которую общая теория относительности приписывает искривлению пространственно-временного континуума, никак не вписывается в рамки квантовой механики. Физики сделали лишь небольшой шаг к пониманию сильно искривленной структуры пространства-времени, которая, согласно квантовой механике, должна наблюдаться на чрезвычайно малых расстояниях.

    • Страницы
    • 1
    • 2


  • Полное отсутствие проводов у электробытовых приборов и доступ к электроэнергии в любой точке земного шара без ограничений, в требуемом количестве — имея при себе лишь передатчик размером со спичечный коробок…

    • Страницы
    • 1
    • 2
    • 3