Тайны вселенной. Парадокс Большого Взрыва

Втр, 06/25/2013 - 15:45

Но, парадокс, к этому моменту область Вселенной уже занимала пространство не менее 1014 км в поперечнике. Следовательно, Вселенная состояла примерно из 1027 причинно не связанных друг с другом областей, каждая из которых, тем не менее, расширялась с точно одинаковой скоростью. Исследуя тепловое космическое излучение, идущее с противоположных сторон звездного неба, астрономы регистрируют совершенно одинаковые «дактилоскопические» отпечатки областей Вселенной, разделенных огромными расстояниями. Эти расстояния оказываются в 90-то с лишним раз больше расстояния, которое мог пройти свет с момента испускания теплового излучения.

Крупномасштабная однородность Вселенной выглядит еще более загадочной, если взять во внимание, что в малых масштабах Вселенная отнюдь не однородна. Существование отдельных галактик и галактических скоплений свидетельствует об отклонении от строгой однородности, причем это отклонение к тому же повсеместно одинаково по масштабам и величине. Гравитация стремится увеличить любое начальное скопление вещества, поэтому степень неоднородности, необходимая для образования галактик, во время Большого взрыва была значительно меньше, нежели теперь. Однако в начальной фазе Большого взрыва должна была все-таки присутствовать небольшая неоднородность, иначе галактики никогда бы не образовались.

Если допустить, что единственной силой во Вселенной является гравитационное притяжение, то Большой взрыв следует трактовать как не имеющий причины, с заданными начальными условиями, для которого характерна поразительная согласованность, чтобы прийти к существующей структуре космоса, а Вселенная должна была с самого начала развиваться надлежащим образом. В этом как раз и заключается парадокс возникновения Вселенной, который удалось разрешить лишь в последние годы.

Еще Ньютон понимал, сколь сложную проблему представляет устойчивость Вселенной, а именно: каким образом звезды сохраняют положение в пространстве, не имея опоры? Универсальный характер гравитационного притяжения должен был привести к стягиванию звезд в скопления вплотную друг к другу. Поэтому Ньютон рассуждал, что каждая звезда «падала» бы в направлении центра скопления звезд, но так как Вселенная бесконечная, и звезды распределены по ней равномерно, то общего центра не существует, и звездам просто некуда «падать». Любая звезда испытывала бы воздействие гравитационного притяжения всех своих соседей, но вследствие усреднения этих взаимодействий по различным направлениям не возникло бы никакой результирующей силы, стремящейся переместить данную звезду в определенное положение относительно всей совокупности звезд.

Через 200 лет Эйнштейн создал новую теорию гравитации, задолго до выдвижения идеи расширяющейся Вселенной голландским астрономом Вилем де Ситтером в 1916 году и подтвержденное экспериментальным путем Хабблом в 1927 году разбегание галактик. Эйнштейн считал Вселенную статичной. По его мнению, для предотвращения коллапса Вселенной под действием ее собственной гравитации должна существовать иная космическая сила, которая могла бы противостоять гравитации. Эта сила должна быть силой отталкивания, чтобы компенсировать гравитационное притяжение. Само по себе это рассуждение убедительно, достаточно простое и естественно. В действительности же свойства такой силы оказываются совершенно необычными. Естественно, никакой подобной силы на Земле до сих пор не замечено. Очевидно, если сила космического отталкивания и существует, то она не должна оказывать сколько-нибудь заметного действия на малых расстояниях, но ее величина значительно возрастает в астрономических масштабах. Это противоречит всему предшествующему опыту изучения природы сил: обычно они интенсивны на малых расстояниях и ослабевают с увеличением расстояния. Например, электромагнитное и гравитационное взаимодействия непрерывно убывают по закону обратных квадратов.

Но введенная Эйнштейном сила космического отталкивания («антигравитация») на самом деле не является пятым взаимодействием в природе, а просто причудливое проявление самой гравитации. По его мнению, нет никакого противоречия в том, что, с одной стороны, отрицательное давление невидимых космических газов, которые заполнили все пространство Вселенной, как бы всасывают внутрь галактики, а с другой — эта гипотетическая среда отталкивает их. Ведь отталкивание обусловлено гравитацией среды, а отнюдь не механическими воздействиями, которые создаются не самим давлением, а разностью давлений, но предполагается, что гипотетическая среда заполняет все пространство. Ее нельзя ограничить границами пространства, и находящийся в этой среде наблюдатель вообще не воспринимал бы ее как ощутимую субстанцию. Пространство выглядело бы и воспринималось совершенно пустым. С помощью расчетов Эйнштейн оценил величину силы космического отталкивания, необходимую, чтобы уравновесить гравитацию во Вселенной, подтвердив, что отталкивание должно быть столь малым в пределах Солнечной системы и даже в масштабах Галактики, что его невозможно обнаружить экспериментально. Основная идея Эйнштейна основывалась на строгом балансе сил притяжения и отталкивания, то есть устойчивом равновесии.
Но в ходе дальнейших исследований выявились некоторые тонкие детали. К примеру, если бы статическая вселенная Эйнштейна немного расширилась, то гравитационное притяжение, ослабевающее с расстоянием, несколько уменьшилось бы, тогда как силы отталкивания, возрастающие с расстоянием — увеличились бы. Это привело бы к нарушению баланса в пользу сил отталкивания, что вызвало бы дальнейшее расширение Вселенной. И наоборот, если бы статическая вселенная Эйнштейна немного сжалась, то это, в конечном счете, под действием все возрастающего гравитационного притяжения привело бы ко все более быстрому сжатию и как итог — к коллапсу. Таким образом, при малейшем отклонении строгий баланс нарушился бы, и космическая катастрофа была бы неизбежна, но Вселенная расширяется, и в ней доминирует космическая сила отталкивания.

Другие материалы рубрики


  • ...Итак, согласно полученным результатам, в конце первой секунды температура достигла 1010 К — это слишком много для того, чтобы могли существовать сложные ядра. Все пространство Вселенной было тогда заполнено хаотически движущимися протонами и нейтронами, вперемешку с электронами, нейтрино и фотонами (тепловым излучением). Ранняя Вселенная расширялась чрезвычайно быстро, так что по прошествии минуты температура упала до 108 К, а спустя еще несколько минут — ниже уровня, при котором возможны ядерные реакции...

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • Галактика, в которой мы живем, — Млечный Путь — настоящий исполин по галактическим меркам. Среди галактик местной группы лишь Туманность Андромеды может тягаться с нашим домом по количеству звезд, размерам и массе. Однако сферы влияния гигантов давно поделены, и нашу галактику окружают десятки, а может, и сотни галактик-спутников.
    Сейчас известны по крайней мере 23 спутника нашей галактики. Некоторые из них светятся, как миллиарды солнц, и жителям Южного полушария нашей планеты отлично знакомы Магеллановы облака — крупнейшие спутники нашей Галактики, не заметить которые на ночном небе невозможно даже невооруженным глазом.



  • Однако сторонники потоков воды провели всестороннее исследование гипотезы о жидкой углекислоте и других средах. Были детально рассмотрены практически все ее аспекты и сделаны убедительные выводы. Например, в аккуратной работе Стьюарта и Ниммо, вышедшей в 2002 году, результаты сформулированы следующим образом: «Мы нашли, что ни конденсированный CO2, ни клатраты CO2 не могут быть накоплены в коре Марса в достаточных количествах... Таким образом, мы заключаем, что овраги не могут быть образованы жидким CO2. В свете этих результатов потоки жидкой воды остаются предпочтительным механизмом формирования свежих протоков на поверхности».


  • Давайте вспомним испытание противоспутникового оружия, проведенное 11 января 2007 года Китаем. Почему оно вызвало беспокойство у специалистов космической отрасли? Ведь с 1968-го по 1986-й США и СССР провели свыше 20 таких же испытаний! И с того времени уже было проведено несколько подобных испытаний?! Дело вовсе не в международной безопасности. Или не только в ней.



  • В нашей Галактике за пределами Солнечной системы обнаружено несколько сотен планет. Исследовать их проще и дешевле при помощи автоматических зондов сверхмалого размера. Запускать эти аппараты можно с Земли из электромагнитной пушки, а ускорять и корректировать орбиты будут гравитационные поля встречных звезд.
    Полеты к звездам — любимая тема фантастов и авторов компьютерных игр. Лихо носятся их звездолеты на просторах Галактики! Вот только неясно — как и зачем? Но эти вопросы не очень волнуют любознательных читателей: «как» — это придумают инженеры, а уж «зачем» — вообще неприлично спрашивать. Вы только представьте: новые неизведанные миры, братья по разуму... Разве это неинтересно?!
    Но не все фантазии удается воплотить в жизнь. Романтическая эпоха поиска внеземных цивилизаций, рожденная в начале 1960-х успехами космонавтики и радиоастрономии, к концу столетия почти сошла на нет.



  • В своей ранней молодости Марс, похоже, подвергся удару, навсегда изменившему облик планеты. Объект размером с Плутон врезался в планету с севера, разделив ее на две половины — низкий север и высокий юг. Крупнейший кратер Солнечной системы сохранился до наших дней.



  • Наблюдения на рентгеновской обсерватории «Чандра» показали наличие большого числа маломассивных рентгеновских двойных звезд в эллиптических и линзовидных галактиках, а также в балджах — центральных сферических компонентах — дисковых галактик. Распределение источников по светимостям хорошо описывается двумя компонентами, граница между которыми соответствует светимости порядка (2-3) 1038 эрг/с. Т.к. эта величина примерно соответствует максимальной (т.н. Эддингтоновской) светимости объекта с массой 1.4 Мо, то возможно, что более мощные источники являются аккрецирующими черными дырами, а менее мощные — нейтронными звездами. Т.о. с некоторой долей уверенности можно говорить, что мы видим в галактиках ранних типов — эллиптических и линзовидных — тесные двойные системы как с черными дырами (самые яркие источники), так и с нейтронными звездами (менее яркие).



  • Этот взрыв потряс не только часть Вселенной, но и земную астрономию! Громадная звезда вдруг стала сверхновой, и ее разорвало на куски с таким шиком, что даже бывалые астрономы заявили, что никогда такого не видали. А ведь должна была вести себя тихо-тихо. Ученые подозревают, что такое разрушительное событие может в любой момент повториться у нас прямо под боком. Возможно, даже завтра. Или прямо сейчас.



  • Теория эволюции звезд основана на диаграмме «спектр-светимость». Спектр звезды связан с температурой ее поверхностных слоев, светимость — это количество световой энергии, излучаемой звездой в единицу времени. По оси абсцисс откладывается последовательность спектральных классов, по оси ординат — светимость. Звезды Галактики изображаются на диаграмме точками. Точки могли бы расположиться как попало, могли бы сгуститься к одной линии. Но они сгущаются к нескольким линиям и областям, из которых выделяются пять. Им соответствуют группы звезд: звезды главной последовательности, субкарлики, красные гиганты, сверхгиганты, белые карлики. Сопоставляя диаграммы «спектр-светимость», составленные для различных звездных скоплений, можно с уверенностью утверждать, что звезды главной последовательности на определенном этапе эволюции превращаются в красные гиганты. Из диаграмм также видно, как это происходит: температура звезды начинает уменьшаться, размеры и светимость, наоборот, увеличиваются. Через некоторое время температура опять начинает расти. Скорость эволюции определяется начальной массой звезды.

    • Страницы
    • 1
    • 2
    • 3


  • Эксперты ООН в ежегодных докладах публикуют данные, говорящие, что Землю в перспективе ждет катастрофическое глобальное потепление, обусловленное возрастающими выбросами углекислого газа в атмосферу. Однако наблюдение за Солнцем позволяет утверждать, что в повышении температуры углекислый газ «не виноват» и в ближайшие десятилетия нас ждет не катастрофическое потепление, а глобальное, и очень длительное, похолодание.

    • Страницы
    • 1
    • 2
    • 3
    • 4
    • 5