Тайны вселенной. Парадокс Большого Взрыва

Втр, 06/25/2013 - 15:45

Но, парадокс, к этому моменту область Вселенной уже занимала пространство не менее 1014 км в поперечнике. Следовательно, Вселенная состояла примерно из 1027 причинно не связанных друг с другом областей, каждая из которых, тем не менее, расширялась с точно одинаковой скоростью. Исследуя тепловое космическое излучение, идущее с противоположных сторон звездного неба, астрономы регистрируют совершенно одинаковые «дактилоскопические» отпечатки областей Вселенной, разделенных огромными расстояниями. Эти расстояния оказываются в 90-то с лишним раз больше расстояния, которое мог пройти свет с момента испускания теплового излучения.

Крупномасштабная однородность Вселенной выглядит еще более загадочной, если взять во внимание, что в малых масштабах Вселенная отнюдь не однородна. Существование отдельных галактик и галактических скоплений свидетельствует об отклонении от строгой однородности, причем это отклонение к тому же повсеместно одинаково по масштабам и величине. Гравитация стремится увеличить любое начальное скопление вещества, поэтому степень неоднородности, необходимая для образования галактик, во время Большого взрыва была значительно меньше, нежели теперь. Однако в начальной фазе Большого взрыва должна была все-таки присутствовать небольшая неоднородность, иначе галактики никогда бы не образовались.

Если допустить, что единственной силой во Вселенной является гравитационное притяжение, то Большой взрыв следует трактовать как не имеющий причины, с заданными начальными условиями, для которого характерна поразительная согласованность, чтобы прийти к существующей структуре космоса, а Вселенная должна была с самого начала развиваться надлежащим образом. В этом как раз и заключается парадокс возникновения Вселенной, который удалось разрешить лишь в последние годы.

Еще Ньютон понимал, сколь сложную проблему представляет устойчивость Вселенной, а именно: каким образом звезды сохраняют положение в пространстве, не имея опоры? Универсальный характер гравитационного притяжения должен был привести к стягиванию звезд в скопления вплотную друг к другу. Поэтому Ньютон рассуждал, что каждая звезда «падала» бы в направлении центра скопления звезд, но так как Вселенная бесконечная, и звезды распределены по ней равномерно, то общего центра не существует, и звездам просто некуда «падать». Любая звезда испытывала бы воздействие гравитационного притяжения всех своих соседей, но вследствие усреднения этих взаимодействий по различным направлениям не возникло бы никакой результирующей силы, стремящейся переместить данную звезду в определенное положение относительно всей совокупности звезд.

Через 200 лет Эйнштейн создал новую теорию гравитации, задолго до выдвижения идеи расширяющейся Вселенной голландским астрономом Вилем де Ситтером в 1916 году и подтвержденное экспериментальным путем Хабблом в 1927 году разбегание галактик. Эйнштейн считал Вселенную статичной. По его мнению, для предотвращения коллапса Вселенной под действием ее собственной гравитации должна существовать иная космическая сила, которая могла бы противостоять гравитации. Эта сила должна быть силой отталкивания, чтобы компенсировать гравитационное притяжение. Само по себе это рассуждение убедительно, достаточно простое и естественно. В действительности же свойства такой силы оказываются совершенно необычными. Естественно, никакой подобной силы на Земле до сих пор не замечено. Очевидно, если сила космического отталкивания и существует, то она не должна оказывать сколько-нибудь заметного действия на малых расстояниях, но ее величина значительно возрастает в астрономических масштабах. Это противоречит всему предшествующему опыту изучения природы сил: обычно они интенсивны на малых расстояниях и ослабевают с увеличением расстояния. Например, электромагнитное и гравитационное взаимодействия непрерывно убывают по закону обратных квадратов.

Но введенная Эйнштейном сила космического отталкивания («антигравитация») на самом деле не является пятым взаимодействием в природе, а просто причудливое проявление самой гравитации. По его мнению, нет никакого противоречия в том, что, с одной стороны, отрицательное давление невидимых космических газов, которые заполнили все пространство Вселенной, как бы всасывают внутрь галактики, а с другой — эта гипотетическая среда отталкивает их. Ведь отталкивание обусловлено гравитацией среды, а отнюдь не механическими воздействиями, которые создаются не самим давлением, а разностью давлений, но предполагается, что гипотетическая среда заполняет все пространство. Ее нельзя ограничить границами пространства, и находящийся в этой среде наблюдатель вообще не воспринимал бы ее как ощутимую субстанцию. Пространство выглядело бы и воспринималось совершенно пустым. С помощью расчетов Эйнштейн оценил величину силы космического отталкивания, необходимую, чтобы уравновесить гравитацию во Вселенной, подтвердив, что отталкивание должно быть столь малым в пределах Солнечной системы и даже в масштабах Галактики, что его невозможно обнаружить экспериментально. Основная идея Эйнштейна основывалась на строгом балансе сил притяжения и отталкивания, то есть устойчивом равновесии.
Но в ходе дальнейших исследований выявились некоторые тонкие детали. К примеру, если бы статическая вселенная Эйнштейна немного расширилась, то гравитационное притяжение, ослабевающее с расстоянием, несколько уменьшилось бы, тогда как силы отталкивания, возрастающие с расстоянием — увеличились бы. Это привело бы к нарушению баланса в пользу сил отталкивания, что вызвало бы дальнейшее расширение Вселенной. И наоборот, если бы статическая вселенная Эйнштейна немного сжалась, то это, в конечном счете, под действием все возрастающего гравитационного притяжения привело бы ко все более быстрому сжатию и как итог — к коллапсу. Таким образом, при малейшем отклонении строгий баланс нарушился бы, и космическая катастрофа была бы неизбежна, но Вселенная расширяется, и в ней доминирует космическая сила отталкивания.

Другие материалы рубрики


  • Объект, отснятый близ звезды, сходной с Солнцем, не вписывается в привычные теории формирования планет. Специалистам еще предстоит разобраться с особенностями рождения этого странного мира, а широкая публика просто любуется снимками. Еще бы — не каждый день можно увидеть планету другой звезды, пусть и открыты их сотни.
    Звезда 1RXS J160929.1-210524 расположена примерно в 500 световых лет от нас. Она очень похожа на Солнце. Ее «вес» равен 85% массы нашей родной звезды. Правда, это светило значительно моложе нашего — 210524 возникла порядка пяти миллионов лет назад.
    Новая планета, по расчетам астрономов, обладает массой примерно в восемь масс Юпитера. И она не была бы такой уж уникальной, если б не два обстоятельства. Первое — она «вживую» запечатлена на снимках. А о втором скажем позже.
    Впервые астрономы непосредственно увидели объект планетарной массы на орбите вокруг звезды, такой как Солнце, и если подтвердится, что этот объект действительно гравитационно привязан к звезде, это будет крупным шагом вперед.
    Интригу, впрочем, принесло не яркое достижение наблюдательной астрономии как таковое, а выявленные параметры системы.



  • ...Теперь вы должны быть предельно внимательны. Следующие несколько секунд окажутся решающими, поэтому вы включаете высокоскоростную регистрирующую систему для детальной записи всех приходящих сведений. Через 61 с R3D3 сообщает, что все системы пока функционируют нормально, горизонт - на расстоянии 8000 км и приближается со скоростью 15 тыс. км/с. Проходит 61,6 с. Еще все в порядке, до горизонта осталось 2000 км, скорость - 30 тыс. км/с (или 0,1 скорости света, так что цвет излучения начинает меняться все заметнее). А затем, в течение следующей 0,1 с вы с изумлением замечаете, что излучение из зеленого становится красным, инфракрасным, микроволновым, затем приходят радиоволны и наконец все исчезает. Через 61,7 с все кончено - лазерный луч пропал. R3D3 достиг скорости света и исчез за горизонтом.

    • Страницы
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6


  • Был ли Большой взрыв началом времени или Вселенная существовала и до него? Лет десять назад такой вопрос казался нелепым. В размышлениях о том, что было до Большого взрыва, космологи видели не больше смысла, чем в поисках пути, идущего от Северного полюса на север. Но развитие теоретической физики и, в частности, появление теории струн заставило ученых снова задуматься о предначальной эпохе.
    Вопрос о начале начал занимать философов и богословов с давних времен. Он переплетается с множеством фундаментальных проблем, нашедших свое отражение в знаменитой картине Поля Гогена «D’ou venons-nous? Que sommes-nous? Ou allons-nous?» («Откуда мы пришли? Кто мы такие? Куда мы идем?»). Полотно изображает извечный цикл: рождение, жизнь и смерть — происхождение, идентификация и предназначение каждого индивидуума. Пытаясь разобраться в своем происхождении, мы возводим свою родословную к минувшим поколениям, ранним формам жизни и прото-жизни, химическим элементам, возникшим в молодой Вселенной, и, наконец, к аморфной энергии, некогда заполнявшей пространство. Уходит ли наше фамильное древо корнями в бесконечность или космос так же не вечен, как и мы?

    • Страницы
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6


  • В нашей Галактике за пределами Солнечной системы обнаружено несколько сотен планет. Исследовать их проще и дешевле при помощи автоматических зондов сверхмалого размера. Запускать эти аппараты можно с Земли из электромагнитной пушки, а ускорять и корректировать орбиты будут гравитационные поля встречных звезд.
    Полеты к звездам — любимая тема фантастов и авторов компьютерных игр. Лихо носятся их звездолеты на просторах Галактики! Вот только неясно — как и зачем? Но эти вопросы не очень волнуют любознательных читателей: «как» — это придумают инженеры, а уж «зачем» — вообще неприлично спрашивать. Вы только представьте: новые неизведанные миры, братья по разуму... Разве это неинтересно?!
    Но не все фантазии удается воплотить в жизнь. Романтическая эпоха поиска внеземных цивилизаций, рожденная в начале 1960-х успехами космонавтики и радиоастрономии, к концу столетия почти сошла на нет.



  • ...Несмотря на то, что идея коллапса кажется простой (при сжатии ядра выделяется энергия гравитационной связи, за счет которой выбрасываются внешние слои вещества), трудно понять процесс в деталях. В конце жизни у звезды с массой более 10 масс Солнца образуется слоеная структура, с глубиной появляются слои все более тяжелых элементов.
    Ядро состоит в основном из железа, а равновесие звезды поддерживается квантовым отталкиванием электронов.
    Но в конце концов масса звезды подавляет электроны, которые вжимаются в атомные ядра, где начинают реагировать с протонами и образовывать нейтроны и электронные нейтрино. В свою очередь, нейтроны и оставшиеся протоны прижимаются друг к другу все сильнее, пока их собственная сила отталкивания не начнет действовать и не остановит коллапс.

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • Юпитер называют планетой загадок. В статье высказывается гипотеза о причинах феномена «горячих теней» — наиболее таинственного и малоисследованного процесса, наблюдаемого в атмосфере гигантской планеты.

    • Страницы
    • 1
    • 2
    • 3


  • Наблюдая и изучая особенности Млечного Пути, астрономы долгое время не могли понять общую структуру и историю нашей Галактики. До 1920 г. ученые не были уверены, что Галактика — отдельный объект, один из миллиардов подобных. К середине 50-х гг. они наконец составили план Галактики, представляющий собой величественный диск из звезд и газа. В 60-х гг. теоретики считали, что наша Галактика сформировалась на раннем этапе космической истории — по новейшим оценкам, около 13 млрд. лет назад — и с той поры не претерпевала существенных изменений.

    • Страницы
    • 1
    • 2
    • 3
    • 4
    • 5


  • Однако сторонники потоков воды провели всестороннее исследование гипотезы о жидкой углекислоте и других средах. Были детально рассмотрены практически все ее аспекты и сделаны убедительные выводы. Например, в аккуратной работе Стьюарта и Ниммо, вышедшей в 2002 году, результаты сформулированы следующим образом: «Мы нашли, что ни конденсированный CO2, ни клатраты CO2 не могут быть накоплены в коре Марса в достаточных количествах... Таким образом, мы заключаем, что овраги не могут быть образованы жидким CO2. В свете этих результатов потоки жидкой воды остаются предпочтительным механизмом формирования свежих протоков на поверхности».


  • Впервые астрономы обнаружили планету вне нашей Солнечной системы, которая является потенциально пригодной для жизни, с температурами подобными земным, сопоставимыми с Землей массой и размером и, вероятно, жидкой водой на поверхности. Что приятно, потенциально обитаемый мир находится всего в двух десятках световых лет от нас. Когда-нибудь люди туда смогут добраться.
    О сенсационной находке рассказала 25 апреля 2007 года международная группа из 11 астрономов (из Швейцарии, Португалии и Франции), которая работала в Чили, на одном из телескопов Европейской южной обсерватории (ESO). Ученые нашли сходную с Землей планету у звезды Gliese 581 — красного карлика, расположенного в созвездии Весы.
    Планета, получившая имя Gliese 581c, обладает массой примерно в 5 масс Земли. Ее диаметр оценивается в 1,5 диаметра нашей планеты, так что сила тяжести на ее поверхности составляет приблизительно 1,6 g. Из-за этих параметров астрономы окрестили ее также «Суперземлей» (super-Earth).
    Ученые предполагают, что эта планета — скалистый мир, сходный с Землей по облику. Как возможный вариант — это может быть ледяная планета. Но в обоих случаях на ее поверхности должна быть жидкая вода. Причем, в случае с ледяным миром — она может быть покрыта океаном полностью.



  • Наблюдения на рентгеновской обсерватории «Чандра» показали наличие большого числа маломассивных рентгеновских двойных звезд в эллиптических и линзовидных галактиках, а также в балджах — центральных сферических компонентах — дисковых галактик. Распределение источников по светимостям хорошо описывается двумя компонентами, граница между которыми соответствует светимости порядка (2-3) 1038 эрг/с. Т.к. эта величина примерно соответствует максимальной (т.н. Эддингтоновской) светимости объекта с массой 1.4 Мо, то возможно, что более мощные источники являются аккрецирующими черными дырами, а менее мощные — нейтронными звездами. Т.о. с некоторой долей уверенности можно говорить, что мы видим в галактиках ранних типов — эллиптических и линзовидных — тесные двойные системы как с черными дырами (самые яркие источники), так и с нейтронными звездами (менее яркие).