Тайны вселенной. Парадокс Большого Взрыва

Втр, 06/25/2013 - 15:45

Но, парадокс, к этому моменту область Вселенной уже занимала пространство не менее 1014 км в поперечнике. Следовательно, Вселенная состояла примерно из 1027 причинно не связанных друг с другом областей, каждая из которых, тем не менее, расширялась с точно одинаковой скоростью. Исследуя тепловое космическое излучение, идущее с противоположных сторон звездного неба, астрономы регистрируют совершенно одинаковые «дактилоскопические» отпечатки областей Вселенной, разделенных огромными расстояниями. Эти расстояния оказываются в 90-то с лишним раз больше расстояния, которое мог пройти свет с момента испускания теплового излучения.

Крупномасштабная однородность Вселенной выглядит еще более загадочной, если взять во внимание, что в малых масштабах Вселенная отнюдь не однородна. Существование отдельных галактик и галактических скоплений свидетельствует об отклонении от строгой однородности, причем это отклонение к тому же повсеместно одинаково по масштабам и величине. Гравитация стремится увеличить любое начальное скопление вещества, поэтому степень неоднородности, необходимая для образования галактик, во время Большого взрыва была значительно меньше, нежели теперь. Однако в начальной фазе Большого взрыва должна была все-таки присутствовать небольшая неоднородность, иначе галактики никогда бы не образовались.

Если допустить, что единственной силой во Вселенной является гравитационное притяжение, то Большой взрыв следует трактовать как не имеющий причины, с заданными начальными условиями, для которого характерна поразительная согласованность, чтобы прийти к существующей структуре космоса, а Вселенная должна была с самого начала развиваться надлежащим образом. В этом как раз и заключается парадокс возникновения Вселенной, который удалось разрешить лишь в последние годы.

Еще Ньютон понимал, сколь сложную проблему представляет устойчивость Вселенной, а именно: каким образом звезды сохраняют положение в пространстве, не имея опоры? Универсальный характер гравитационного притяжения должен был привести к стягиванию звезд в скопления вплотную друг к другу. Поэтому Ньютон рассуждал, что каждая звезда «падала» бы в направлении центра скопления звезд, но так как Вселенная бесконечная, и звезды распределены по ней равномерно, то общего центра не существует, и звездам просто некуда «падать». Любая звезда испытывала бы воздействие гравитационного притяжения всех своих соседей, но вследствие усреднения этих взаимодействий по различным направлениям не возникло бы никакой результирующей силы, стремящейся переместить данную звезду в определенное положение относительно всей совокупности звезд.

Через 200 лет Эйнштейн создал новую теорию гравитации, задолго до выдвижения идеи расширяющейся Вселенной голландским астрономом Вилем де Ситтером в 1916 году и подтвержденное экспериментальным путем Хабблом в 1927 году разбегание галактик. Эйнштейн считал Вселенную статичной. По его мнению, для предотвращения коллапса Вселенной под действием ее собственной гравитации должна существовать иная космическая сила, которая могла бы противостоять гравитации. Эта сила должна быть силой отталкивания, чтобы компенсировать гравитационное притяжение. Само по себе это рассуждение убедительно, достаточно простое и естественно. В действительности же свойства такой силы оказываются совершенно необычными. Естественно, никакой подобной силы на Земле до сих пор не замечено. Очевидно, если сила космического отталкивания и существует, то она не должна оказывать сколько-нибудь заметного действия на малых расстояниях, но ее величина значительно возрастает в астрономических масштабах. Это противоречит всему предшествующему опыту изучения природы сил: обычно они интенсивны на малых расстояниях и ослабевают с увеличением расстояния. Например, электромагнитное и гравитационное взаимодействия непрерывно убывают по закону обратных квадратов.

Но введенная Эйнштейном сила космического отталкивания («антигравитация») на самом деле не является пятым взаимодействием в природе, а просто причудливое проявление самой гравитации. По его мнению, нет никакого противоречия в том, что, с одной стороны, отрицательное давление невидимых космических газов, которые заполнили все пространство Вселенной, как бы всасывают внутрь галактики, а с другой — эта гипотетическая среда отталкивает их. Ведь отталкивание обусловлено гравитацией среды, а отнюдь не механическими воздействиями, которые создаются не самим давлением, а разностью давлений, но предполагается, что гипотетическая среда заполняет все пространство. Ее нельзя ограничить границами пространства, и находящийся в этой среде наблюдатель вообще не воспринимал бы ее как ощутимую субстанцию. Пространство выглядело бы и воспринималось совершенно пустым. С помощью расчетов Эйнштейн оценил величину силы космического отталкивания, необходимую, чтобы уравновесить гравитацию во Вселенной, подтвердив, что отталкивание должно быть столь малым в пределах Солнечной системы и даже в масштабах Галактики, что его невозможно обнаружить экспериментально. Основная идея Эйнштейна основывалась на строгом балансе сил притяжения и отталкивания, то есть устойчивом равновесии.
Но в ходе дальнейших исследований выявились некоторые тонкие детали. К примеру, если бы статическая вселенная Эйнштейна немного расширилась, то гравитационное притяжение, ослабевающее с расстоянием, несколько уменьшилось бы, тогда как силы отталкивания, возрастающие с расстоянием — увеличились бы. Это привело бы к нарушению баланса в пользу сил отталкивания, что вызвало бы дальнейшее расширение Вселенной. И наоборот, если бы статическая вселенная Эйнштейна немного сжалась, то это, в конечном счете, под действием все возрастающего гравитационного притяжения привело бы ко все более быстрому сжатию и как итог — к коллапсу. Таким образом, при малейшем отклонении строгий баланс нарушился бы, и космическая катастрофа была бы неизбежна, но Вселенная расширяется, и в ней доминирует космическая сила отталкивания.

Другие материалы рубрики


  • Невиданный успех фильма «Аватар» о событиях на экзопланете Пандора на самом деле может быть не такой уж и фантастикой. По крайней мере, обнаружение новых планет в других звездных системах дает нам надежды на то, что мы на самом деле увидим причудливых инопланетных существ.
    Фантастика зачастую является таковой лишь для определенной эпохи, и с развитием научно-технического прогресса она становится реальностью. Вот и «Аватар» не зря был снят, точнее, смонтирован именно сейчас — ведь еще десять-пятнадцать лет назад подобное казалось уж больно нереальным. Примерно, как обнаружение живого динозавра.
    Современные астрономы уже не отрицают, что где-то там, в других галактиках или даже в нашем родном Млечном пути, есть жизнь. Завлабораторией астроинформатики Главной астрономической обсерватории НАН Украины Ирина Вавилова так и говорит: «Считаю, что она существует. В форме простейших организмов — так точно».

    • Страницы
    • 1
    • 2


  • ...Итак, согласно полученным результатам, в конце первой секунды температура достигла 1010 К — это слишком много для того, чтобы могли существовать сложные ядра. Все пространство Вселенной было тогда заполнено хаотически движущимися протонами и нейтронами, вперемешку с электронами, нейтрино и фотонами (тепловым излучением). Ранняя Вселенная расширялась чрезвычайно быстро, так что по прошествии минуты температура упала до 108 К, а спустя еще несколько минут — ниже уровня, при котором возможны ядерные реакции...

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • О спонтанном возникновении вещества из пустого пространства говорят как о рождении “из ничего”, которое близко по духу рождению ex nihilo в христианской доктрине. Для физики пустое пространство совсем не “ничего”, а весьма существенная часть Вселенной, а мысль о рождении самого пространства может показаться вообще странной. Однако в каком-то смысле это все время происходит вокруг нас. Расширение Вселенной есть не что иное, как непрерывное “разбухание” пространства. С каждым днем доступная современным телескопам область Вселенной возрастает на 1018 кубических световых лет. Здесь полезна аналогия с резиной. Если упругий резиновый жгут вытянуть, его “становится больше”. Пространство напоминает суперэластик тем, что оно, насколько известно физикам, может неограниченно долго растягиваться не разрываясь. Растяжение и искривление пространства напоминает деформацию упругого тела тем, что “движение” пространства происходит по законам механики точно так же, как и движение обычного вещества. В данном случае это законы гравитации. Квантовая теория в равной мере применима как к веществу, так и к пространству и к времени.
    Действительно, благодаря собственной физической природе Вселенная возбуждает в себе всю энергию, необходимую для “создания” материи — это есть космический бутстрэп (bootstrap — в переводе “зашнуровка”, в переносном смысле — отсутствие иерархии в системе элементарных частиц).



  • В августе 1989 года с космодрома Куру ракетой-носителем Ариана 4 был запущен на орбиту вокруг Земли искусственный спутник HIPPARCOS. Название этого аппарата напоминает имя известного древнегреческого астронома Гиппарха (II в. до н.э.), открывшего явление прецессионного движения оси вращения Земли и предложившего первую фотометрическую шкалу измерения блеска звезд. Отдавая дань уважения Гиппарху, специалисты из Европейского Космического Агентства дали своему спутнику имя, которое они составили из первых букв полного названия научного проекта: HIgh Precision PARarallax COllecting Satellite — «Спутник для получения высокоточных параллаксов». Космический аппарат просуществовал на орбите 37 месяцев, и за это время он провел миллионы измерений звезд. В результате их обработки появились на свет два звездных каталога. Первый из них — HIPPARCOS.

    • Страницы
    • 1
    • 2


  • Существует небольшой шанс, что через 3,34 миллиарда лет Марс столкнется с Землей. Также есть вероятность столкновения Земли и Венеры или Меркурия и Венеры. Меркурий вообще может упасть на Солнце или улететь в межзвездное пространство. Таковы причуды нашей системы, новые тайны которой раскрыли ученые.
    Подробнейшее численное моделирование эволюции орбит в Солнечной системе выполнили профессор Жак Ласкар (Jacques Laskar) и Микаэль Гастино (Mickael Gastineau) из Парижской обсерватории (Observatoire de Paris).
    Долгое время астрономы полагали, что орбиты планет в Солнечной системе стабильны и неизменны. Потом стали появляться сведения, что на заре зарождения системы орбиты ряда планет сильно отличались от нынешних и претерпевали большие изменения, прежде чем все «устоялось».



  • Судя по многочисленным публикациям, посвященным современной астрофизике, она находится на подъеме. Положение дел даже сравнивают с революционной ситуацией, сложившейся в физике в начале прошлого века. Но если тогда истина рождалась в спорах, сейчас новые понятия проникают в астрофизику практически без сопротивления. При этом ключевые положения старой теории, вместо того, чтобы обрести окончательную ясность, заменяются наборами гипотез. Современный астрофизик подробно объяснит, что такое космологический вакуум или антигравитация, но на вопрос о происхождении галактик даст расплывчатый ответ, включающий несколько возможных сценариев.

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • Давайте вспомним испытание противоспутникового оружия, проведенное 11 января 2007 года Китаем. Почему оно вызвало беспокойство у специалистов космической отрасли? Ведь с 1968-го по 1986-й США и СССР провели свыше 20 таких же испытаний! И с того времени уже было проведено несколько подобных испытаний?! Дело вовсе не в международной безопасности. Или не только в ней.



  • ...Теперь вы должны быть предельно внимательны. Следующие несколько секунд окажутся решающими, поэтому вы включаете высокоскоростную регистрирующую систему для детальной записи всех приходящих сведений. Через 61 с R3D3 сообщает, что все системы пока функционируют нормально, горизонт - на расстоянии 8000 км и приближается со скоростью 15 тыс. км/с. Проходит 61,6 с. Еще все в порядке, до горизонта осталось 2000 км, скорость - 30 тыс. км/с (или 0,1 скорости света, так что цвет излучения начинает меняться все заметнее). А затем, в течение следующей 0,1 с вы с изумлением замечаете, что излучение из зеленого становится красным, инфракрасным, микроволновым, затем приходят радиоволны и наконец все исчезает. Через 61,7 с все кончено - лазерный луч пропал. R3D3 достиг скорости света и исчез за горизонтом.

    • Страницы
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6


  • Никто пока не определил, всякая ли звезда в Галактике окружена другими планетами, либо Солнце является исключением из данного правила. За последние 9 лет астрономы при наблюдении за колебательными движениями звезд, которые вызваны воздействием, оказываемым на них планетами, обнаружили сотни таких планет. Но этот метод помогает фиксировать лишь самые массивные планеты, находящиеся неподалеку от звезд. Так можно обнаружить Юпитер, Сатурн в Солнечной системе, но мелкие тела (кометы, астероиды, планеты земного типа), делающие Солнечную систему такой разнообразной, астрономы бы не смогли найти, используя эти методы наблюдения.

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • ...Среди прочих лептонов в 1936 году, среди продуктов взаимодействий космических лучей, был открыт мюон. Он оказался одной из первых известных нестабильных субатомных частиц, которая во всех отношениях, кроме стабильности, напоминает электрон, то есть имеет тот же заряд и спин и участвует в тех же взаимодействиях, но имеет бóльшую массу. Примерно за две миллионные доли секунды мюон распадается на электрон и два нейтрино. На долю мюона приходится значительная часть фонового космического излучения, которое регистрируется на поверхности Земли счетчиком Г. Гейгера...

    • Страницы
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6