Тайны вселенной. Парадокс Большого Взрыва

Втр, 06/25/2013 - 15:45

Но, парадокс, к этому моменту область Вселенной уже занимала пространство не менее 1014 км в поперечнике. Следовательно, Вселенная состояла примерно из 1027 причинно не связанных друг с другом областей, каждая из которых, тем не менее, расширялась с точно одинаковой скоростью. Исследуя тепловое космическое излучение, идущее с противоположных сторон звездного неба, астрономы регистрируют совершенно одинаковые «дактилоскопические» отпечатки областей Вселенной, разделенных огромными расстояниями. Эти расстояния оказываются в 90-то с лишним раз больше расстояния, которое мог пройти свет с момента испускания теплового излучения.

Крупномасштабная однородность Вселенной выглядит еще более загадочной, если взять во внимание, что в малых масштабах Вселенная отнюдь не однородна. Существование отдельных галактик и галактических скоплений свидетельствует об отклонении от строгой однородности, причем это отклонение к тому же повсеместно одинаково по масштабам и величине. Гравитация стремится увеличить любое начальное скопление вещества, поэтому степень неоднородности, необходимая для образования галактик, во время Большого взрыва была значительно меньше, нежели теперь. Однако в начальной фазе Большого взрыва должна была все-таки присутствовать небольшая неоднородность, иначе галактики никогда бы не образовались.

Если допустить, что единственной силой во Вселенной является гравитационное притяжение, то Большой взрыв следует трактовать как не имеющий причины, с заданными начальными условиями, для которого характерна поразительная согласованность, чтобы прийти к существующей структуре космоса, а Вселенная должна была с самого начала развиваться надлежащим образом. В этом как раз и заключается парадокс возникновения Вселенной, который удалось разрешить лишь в последние годы.

Еще Ньютон понимал, сколь сложную проблему представляет устойчивость Вселенной, а именно: каким образом звезды сохраняют положение в пространстве, не имея опоры? Универсальный характер гравитационного притяжения должен был привести к стягиванию звезд в скопления вплотную друг к другу. Поэтому Ньютон рассуждал, что каждая звезда «падала» бы в направлении центра скопления звезд, но так как Вселенная бесконечная, и звезды распределены по ней равномерно, то общего центра не существует, и звездам просто некуда «падать». Любая звезда испытывала бы воздействие гравитационного притяжения всех своих соседей, но вследствие усреднения этих взаимодействий по различным направлениям не возникло бы никакой результирующей силы, стремящейся переместить данную звезду в определенное положение относительно всей совокупности звезд.

Через 200 лет Эйнштейн создал новую теорию гравитации, задолго до выдвижения идеи расширяющейся Вселенной голландским астрономом Вилем де Ситтером в 1916 году и подтвержденное экспериментальным путем Хабблом в 1927 году разбегание галактик. Эйнштейн считал Вселенную статичной. По его мнению, для предотвращения коллапса Вселенной под действием ее собственной гравитации должна существовать иная космическая сила, которая могла бы противостоять гравитации. Эта сила должна быть силой отталкивания, чтобы компенсировать гравитационное притяжение. Само по себе это рассуждение убедительно, достаточно простое и естественно. В действительности же свойства такой силы оказываются совершенно необычными. Естественно, никакой подобной силы на Земле до сих пор не замечено. Очевидно, если сила космического отталкивания и существует, то она не должна оказывать сколько-нибудь заметного действия на малых расстояниях, но ее величина значительно возрастает в астрономических масштабах. Это противоречит всему предшествующему опыту изучения природы сил: обычно они интенсивны на малых расстояниях и ослабевают с увеличением расстояния. Например, электромагнитное и гравитационное взаимодействия непрерывно убывают по закону обратных квадратов.

Но введенная Эйнштейном сила космического отталкивания («антигравитация») на самом деле не является пятым взаимодействием в природе, а просто причудливое проявление самой гравитации. По его мнению, нет никакого противоречия в том, что, с одной стороны, отрицательное давление невидимых космических газов, которые заполнили все пространство Вселенной, как бы всасывают внутрь галактики, а с другой — эта гипотетическая среда отталкивает их. Ведь отталкивание обусловлено гравитацией среды, а отнюдь не механическими воздействиями, которые создаются не самим давлением, а разностью давлений, но предполагается, что гипотетическая среда заполняет все пространство. Ее нельзя ограничить границами пространства, и находящийся в этой среде наблюдатель вообще не воспринимал бы ее как ощутимую субстанцию. Пространство выглядело бы и воспринималось совершенно пустым. С помощью расчетов Эйнштейн оценил величину силы космического отталкивания, необходимую, чтобы уравновесить гравитацию во Вселенной, подтвердив, что отталкивание должно быть столь малым в пределах Солнечной системы и даже в масштабах Галактики, что его невозможно обнаружить экспериментально. Основная идея Эйнштейна основывалась на строгом балансе сил притяжения и отталкивания, то есть устойчивом равновесии.
Но в ходе дальнейших исследований выявились некоторые тонкие детали. К примеру, если бы статическая вселенная Эйнштейна немного расширилась, то гравитационное притяжение, ослабевающее с расстоянием, несколько уменьшилось бы, тогда как силы отталкивания, возрастающие с расстоянием — увеличились бы. Это привело бы к нарушению баланса в пользу сил отталкивания, что вызвало бы дальнейшее расширение Вселенной. И наоборот, если бы статическая вселенная Эйнштейна немного сжалась, то это, в конечном счете, под действием все возрастающего гравитационного притяжения привело бы ко все более быстрому сжатию и как итог — к коллапсу. Таким образом, при малейшем отклонении строгий баланс нарушился бы, и космическая катастрофа была бы неизбежна, но Вселенная расширяется, и в ней доминирует космическая сила отталкивания.

Другие материалы рубрики


  • Наблюдения на рентгеновской обсерватории «Чандра» показали наличие большого числа маломассивных рентгеновских двойных звезд в эллиптических и линзовидных галактиках, а также в балджах — центральных сферических компонентах — дисковых галактик. Распределение источников по светимостям хорошо описывается двумя компонентами, граница между которыми соответствует светимости порядка (2-3) 1038 эрг/с. Т.к. эта величина примерно соответствует максимальной (т.н. Эддингтоновской) светимости объекта с массой 1.4 Мо, то возможно, что более мощные источники являются аккрецирующими черными дырами, а менее мощные — нейтронными звездами. Т.о. с некоторой долей уверенности можно говорить, что мы видим в галактиках ранних типов — эллиптических и линзовидных — тесные двойные системы как с черными дырами (самые яркие источники), так и с нейтронными звездами (менее яркие).



  • В нашей Галактике за пределами Солнечной системы обнаружено несколько сотен планет. Исследовать их проще и дешевле при помощи автоматических зондов сверхмалого размера. Запускать эти аппараты можно с Земли из электромагнитной пушки, а ускорять и корректировать орбиты будут гравитационные поля встречных звезд.
    Полеты к звездам — любимая тема фантастов и авторов компьютерных игр. Лихо носятся их звездолеты на просторах Галактики! Вот только неясно — как и зачем? Но эти вопросы не очень волнуют любознательных читателей: «как» — это придумают инженеры, а уж «зачем» — вообще неприлично спрашивать. Вы только представьте: новые неизведанные миры, братья по разуму... Разве это неинтересно?!
    Но не все фантазии удается воплотить в жизнь. Романтическая эпоха поиска внеземных цивилизаций, рожденная в начале 1960-х успехами космонавтики и радиоастрономии, к концу столетия почти сошла на нет.



  • Вращаясь вокруг Солнца, инфракрасная обсерватория НАСА ищет следы молодых звезд и галактик, а также межзвездное пространство, в котором они образовались.
    Космический телескоп имеет очевидные преимущества в изучении инфракрасного теплового излучения, которое испускают объекты, слишком холодные, чтобы сиять в спектре видимого света. Атмосфера Земли - постоянная помеха для инфракрасных приборов, поскольку она не только впитывает слабые инфракрасные лучи из космоса, но и сама выделяет их огромное количество.
    В 1979 году НАСА представило инфракрасный космический телескоп SIRTF. Он не стал первым инфракрасным прибором на орбите, но долгое время оставался самым большим.



  • ...Тесное сходство протона и нейтрона наводит на мысль, что здесь существует симметрия. И действительно, на ядерный процесс никак не отразится, если можно было бы заменить все протоны на нейтроны, или наоборот. Это свойство получило название — симметрия изотопического спина, или изотопическая симметрия. Название связано с тем, что ядра, отличающиеся только числом нейтронов, называются изотопами. Нынешнему состоянию Вселенной соответствует равное количество протонов и нейтронов, которые находятся в постоянном движении. Но какая причина вызывает эти движения и вообще изменения в природе?..

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • Впервые астрономы обнаружили планету вне нашей Солнечной системы, которая является потенциально пригодной для жизни, с температурами подобными земным, сопоставимыми с Землей массой и размером и, вероятно, жидкой водой на поверхности. Что приятно, потенциально обитаемый мир находится всего в двух десятках световых лет от нас. Когда-нибудь люди туда смогут добраться.
    О сенсационной находке рассказала 25 апреля 2007 года международная группа из 11 астрономов (из Швейцарии, Португалии и Франции), которая работала в Чили, на одном из телескопов Европейской южной обсерватории (ESO). Ученые нашли сходную с Землей планету у звезды Gliese 581 — красного карлика, расположенного в созвездии Весы.
    Планета, получившая имя Gliese 581c, обладает массой примерно в 5 масс Земли. Ее диаметр оценивается в 1,5 диаметра нашей планеты, так что сила тяжести на ее поверхности составляет приблизительно 1,6 g. Из-за этих параметров астрономы окрестили ее также «Суперземлей» (super-Earth).
    Ученые предполагают, что эта планета — скалистый мир, сходный с Землей по облику. Как возможный вариант — это может быть ледяная планета. Но в обоих случаях на ее поверхности должна быть жидкая вода. Причем, в случае с ледяным миром — она может быть покрыта океаном полностью.



  • О спонтанном возникновении вещества из пустого пространства говорят как о рождении “из ничего”, которое близко по духу рождению ex nihilo в христианской доктрине. Для физики пустое пространство совсем не “ничего”, а весьма существенная часть Вселенной, а мысль о рождении самого пространства может показаться вообще странной. Однако в каком-то смысле это все время происходит вокруг нас. Расширение Вселенной есть не что иное, как непрерывное “разбухание” пространства. С каждым днем доступная современным телескопам область Вселенной возрастает на 1018 кубических световых лет. Здесь полезна аналогия с резиной. Если упругий резиновый жгут вытянуть, его “становится больше”. Пространство напоминает суперэластик тем, что оно, насколько известно физикам, может неограниченно долго растягиваться не разрываясь. Растяжение и искривление пространства напоминает деформацию упругого тела тем, что “движение” пространства происходит по законам механики точно так же, как и движение обычного вещества. В данном случае это законы гравитации. Квантовая теория в равной мере применима как к веществу, так и к пространству и к времени.
    Действительно, благодаря собственной физической природе Вселенная возбуждает в себе всю энергию, необходимую для “создания” материи — это есть космический бутстрэп (bootstrap — в переводе “зашнуровка”, в переносном смысле — отсутствие иерархии в системе элементарных частиц).



  • ...Итак, согласно полученным результатам, в конце первой секунды температура достигла 1010 К — это слишком много для того, чтобы могли существовать сложные ядра. Все пространство Вселенной было тогда заполнено хаотически движущимися протонами и нейтронами, вперемешку с электронами, нейтрино и фотонами (тепловым излучением). Ранняя Вселенная расширялась чрезвычайно быстро, так что по прошествии минуты температура упала до 108 К, а спустя еще несколько минут — ниже уровня, при котором возможны ядерные реакции...

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • Юпитер называют планетой загадок. В статье высказывается гипотеза о причинах феномена «горячих теней» — наиболее таинственного и малоисследованного процесса, наблюдаемого в атмосфере гигантской планеты.

    • Страницы
    • 1
    • 2
    • 3


  • Эксперты ООН в ежегодных докладах публикуют данные, говорящие, что Землю в перспективе ждет катастрофическое глобальное потепление, обусловленное возрастающими выбросами углекислого газа в атмосферу. Однако наблюдение за Солнцем позволяет утверждать, что в повышении температуры углекислый газ «не виноват» и в ближайшие десятилетия нас ждет не катастрофическое потепление, а глобальное, и очень длительное, похолодание.

    • Страницы
    • 1
    • 2
    • 3
    • 4
    • 5


  • В кинокомедии «Карнавальная ночь» один из персонажей — лектор — сообщает: «Есть ли жизнь на Марсе, нет ли жизни на Марсе, науке не известно». С тех пор прошло почти полвека, но это утверждение справедливо и сегодня. Однако не менее справедливо и другое: «Где есть вода — там есть и жизнь». Сегодня с большой долей уверенности можно сказать: вода на Марсе есть. Дело за малым — отыскать там жизнь.