Тайны вселенной. По ту сторону микромира

Вс, 07/28/2013 - 22:45

Из всего сказанного можно сделать вывод, что фотон оказывается не только частицей видимого света, но и призрачной частицей, которую “видят” только заряженные частицы, претерпевающие рассеяние. Поэтому наблюдаемые фотоны называют реальными, а фотоны, переносящие взаимодействие, — виртуальными, что говорит об их скоротечности и почти призрачном существовании.

Описание электромагнитного взаимодействия с использованием понятий виртуальных фотонов основывается на продуманной до мельчайших деталей и оснащенной совершенным математическим аппаратом теории, известной под названием квантовой электродинамики (КЭД), впервые сформулированной в конце 40-х годов. Физики получили в свое распоряжение теорию, удовлетворяющую основным принципам как квантовой теории, так и теории относительности.

Чтобы проверить величину согласования теории с реальными показателями, было проведено ряд экспериментов, в которых Уиллису Лэмбу из Университета (шт. Аризона, США) удалось доказать полную состоятельность теории КЭД, где вычисления и эксперименты совпадали по более девяти знакам после запятой. Поэтому теория КЭД была принята как модель для квантового описания трех других фундаментальных взаимодействий.

Очевидно, что полям, связанным с другими взаимодействиями, должны соответствовать иные частицы-переносчики. Так, для описания гравитации был введен гравитон, играющий такую же роль, что и фотон, то есть при гравитационном взаимодействии двух частиц между ними происходит обмен гравитонами. Например, именно гравитоны переносят сигналы Луны океанам, следуя которым те поднимаются во время приливов и опускаются при отливах. Гравитоны, снующие между Землей и Солнцем, удерживают нашу планету на орбите, и те же гравитоны накрепко приковывают все, что находится на ее поверхности. Гравитоны, как и фотоны, перемещаются в пространстве со скоростью света и имеют такую же “нулевую массу покоя”, но отличаются от фотона тем, что те имеют спин 1, а у них спин равен 2. Это важное различие определяет направление силы: при электромагнитном взаимодействии одноименно заряженные частицы, например, электроны, отталкиваются, а при гравитационном — все частицы притягиваются друг к другу.

Основная идея обмена частицами-переносчиками распространяется и на остальные взаимодействия — слабое и сильное (табл. 3).

Связь между кварками обеспечивает сильное взаимодействие. Такую связь может создать силовое поле, сходное с электромагнитным, но более сложное.

Электрические силы приводят к образованию связанного состояния двух частиц с зарядами противоположных знаков. В случае кварков возникают связанные состояния трех частиц, что свидетельствует о более сложном характере силового поля, которому соответствует, три разновидности “заряда”. Частицы-переносчики взаимодействия между кварками, связывающие их попарно или тройками, называют глюонами.

Ситуация несколько иная, если взять случай слабого взаимодействия. Радиус этого взаимодействия чрезвычайно мал, поэтому переносчиками слабого взаимодействия должны быть частицы с большими массами покоя. Энергию, заключенную в такой массе, приходится “брать в долг” в соответствии с принципом неопределенности Гейзенберга. Но поскольку “взятая в долг” масса (а значит, и энергия) столь велика, принцип неопределенности требует, чтобы срок погашения такого кредита был чрезвычайно коротким — всего лишь около 10-26 сек. Столь короткоживущие частицы не успевают отойти особенно далеко, и радиус переносимого ими взаимодействия очень мал.

В декабре 1982 года итальянским физиком Карлом Руббиа в ЦЕРНе были открыты W-частицы и Z-частицы, которые являются двумя типами переносчиков слабого взаимодействия. Z-частицы, являясь по сути новой разновидностью света, кроме массы покоя подобны фотону. W-частицы отличаются от Z-частиц наличием электрического заряда.

Пустое пространство кажется не очень перспективным объектом для исследования, однако именно в нем скрыт ключ к полному пониманию существующих в природе взаимодействий. Довольно-таки легко представить вакуум — область пространства, из которой удалено буквально все — частицы, поля, волны. На практике достичь абсолютного вакуума практически невозможно. Даже в космическом пространстве всегда присутствует остаток газа или плазмы, а также реликтовое фоновое излучение, оставшееся от Большого взрыва. Однако всегда для рассмотрения можно представить идеализированный вакуум.

Вообще вакуум — это не пустое безжизненное пространство, лишенное вещества. Источником такого толкования является разновидность принципа неопределенности Гейзенберга, относящаяся к энергии. Как ни стараться опустошить пространство, в нем всегда будет присутствовать рой мимолетных частиц, возникновение которых “субсидируется” соотношением Гейзенберга. Эти частицы-призраки нельзя наблюдать, хотя они могут оставить следы своего кратковременного существования. Они представляют собой разновидность “виртуальных” частиц, аналогичных переносчикам взаимодействий, но не предназначенных для получения или передачи сигналов. Возникнув из пустоты, они снова превращаются в нее, являя собой наглядное доказательство существования силового поля и оставаясь при этом бесплотными призраками. Напрашивается вывод, что вакуум не безжизнен и безлик, а полон энергии. Например, “реальную” частицу, как электрон, всегда целесообразно рассматривать на фоне этой непрерывной активности. Электрон, перемещаясь в пространстве, в действительности оказывается в окружении частиц-призраков — виртуальных лептонов, кварков и переносчиков взаимодействий, — плутая в этой неразберихе. Своим присутствием он вносит возмущения в непрерывную активность вакуума, которая в свою очередь оказывает воздействие на электрон. Даже в состоянии покоя электрон не знает покоя: со всех сторон его непрерывно штурмуют другие частицы, появившиеся из вакуума.

Другие материалы рубрики


  • Галактика, в которой мы живем, — Млечный Путь — настоящий исполин по галактическим меркам. Среди галактик местной группы лишь Туманность Андромеды может тягаться с нашим домом по количеству звезд, размерам и массе. Однако сферы влияния гигантов давно поделены, и нашу галактику окружают десятки, а может, и сотни галактик-спутников.
    Сейчас известны по крайней мере 23 спутника нашей галактики. Некоторые из них светятся, как миллиарды солнц, и жителям Южного полушария нашей планеты отлично знакомы Магеллановы облака — крупнейшие спутники нашей Галактики, не заметить которые на ночном небе невозможно даже невооруженным глазом.



  • За последнее время вблизи Земли пролетели несколько сравнительно крупных небесных тел. Сильную тревогу вызвало в 1936 г. прохождение астероида Адонис на расстоянии около 2 млн. км от Земли. А настоящую панику вызвал в 1937 г. астероид Гермес, имеющий диаметр ≈1,5 км, промчавшийся лишь на расстоянии 800 тыс. км от Земли (удвоенное расстояние до Луны). Позже (в 1992 г.) большой ажиотаж был связан с приближением к Земле малой планеты Тоутатис. Астероид диаметром около полукилометра пролетел мимо Земли 19 мая 1996 г. на расстоянии всего 450 тыс. км.

    • Страницы
    • 1
    • 2
    • 3


  • Вращаясь вокруг Солнца, инфракрасная обсерватория НАСА ищет следы молодых звезд и галактик, а также межзвездное пространство, в котором они образовались.
    Космический телескоп имеет очевидные преимущества в изучении инфракрасного теплового излучения, которое испускают объекты, слишком холодные, чтобы сиять в спектре видимого света. Атмосфера Земли - постоянная помеха для инфракрасных приборов, поскольку она не только впитывает слабые инфракрасные лучи из космоса, но и сама выделяет их огромное количество.
    В 1979 году НАСА представило инфракрасный космический телескоп SIRTF. Он не стал первым инфракрасным прибором на орбите, но долгое время оставался самым большим.



  • Варварские наклонности некоторых звезд иногда возмущают. Пока одни отнимают вещество у ближайших тел, другие поступают еще более нагло и жестоко. Они скидывают со звезд газопылевые диски, которые могли бы дать начало новой планетной системе, а то и новым формам жизни. Но не со всех, а лишь с тех, кто решается переступить опасную черту.



  • Был ли Большой взрыв началом времени или Вселенная существовала и до него? Лет десять назад такой вопрос казался нелепым. В размышлениях о том, что было до Большого взрыва, космологи видели не больше смысла, чем в поисках пути, идущего от Северного полюса на север. Но развитие теоретической физики и, в частности, появление теории струн заставило ученых снова задуматься о предначальной эпохе.
    Вопрос о начале начал занимать философов и богословов с давних времен. Он переплетается с множеством фундаментальных проблем, нашедших свое отражение в знаменитой картине Поля Гогена «D’ou venons-nous? Que sommes-nous? Ou allons-nous?» («Откуда мы пришли? Кто мы такие? Куда мы идем?»). Полотно изображает извечный цикл: рождение, жизнь и смерть — происхождение, идентификация и предназначение каждого индивидуума. Пытаясь разобраться в своем происхождении, мы возводим свою родословную к минувшим поколениям, ранним формам жизни и прото-жизни, химическим элементам, возникшим в молодой Вселенной, и, наконец, к аморфной энергии, некогда заполнявшей пространство. Уходит ли наше фамильное древо корнями в бесконечность или космос так же не вечен, как и мы?

    • Страницы
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6


  • Теория эволюции звезд основана на диаграмме «спектр-светимость». Спектр звезды связан с температурой ее поверхностных слоев, светимость — это количество световой энергии, излучаемой звездой в единицу времени. По оси абсцисс откладывается последовательность спектральных классов, по оси ординат — светимость. Звезды Галактики изображаются на диаграмме точками. Точки могли бы расположиться как попало, могли бы сгуститься к одной линии. Но они сгущаются к нескольким линиям и областям, из которых выделяются пять. Им соответствуют группы звезд: звезды главной последовательности, субкарлики, красные гиганты, сверхгиганты, белые карлики. Сопоставляя диаграммы «спектр-светимость», составленные для различных звездных скоплений, можно с уверенностью утверждать, что звезды главной последовательности на определенном этапе эволюции превращаются в красные гиганты. Из диаграмм также видно, как это происходит: температура звезды начинает уменьшаться, размеры и светимость, наоборот, увеличиваются. Через некоторое время температура опять начинает расти. Скорость эволюции определяется начальной массой звезды.

    • Страницы
    • 1
    • 2
    • 3


  • Наблюдая и изучая особенности Млечного Пути, астрономы долгое время не могли понять общую структуру и историю нашей Галактики. До 1920 г. ученые не были уверены, что Галактика — отдельный объект, один из миллиардов подобных. К середине 50-х гг. они наконец составили план Галактики, представляющий собой величественный диск из звезд и газа. В 60-х гг. теоретики считали, что наша Галактика сформировалась на раннем этапе космической истории — по новейшим оценкам, около 13 млрд. лет назад — и с той поры не претерпевала существенных изменений.

    • Страницы
    • 1
    • 2
    • 3
    • 4
    • 5


  • В кинокомедии «Карнавальная ночь» один из персонажей — лектор — сообщает: «Есть ли жизнь на Марсе, нет ли жизни на Марсе, науке не известно». С тех пор прошло почти полвека, но это утверждение справедливо и сегодня. Однако не менее справедливо и другое: «Где есть вода — там есть и жизнь». Сегодня с большой долей уверенности можно сказать: вода на Марсе есть. Дело за малым — отыскать там жизнь.


  • Юпитер называют планетой загадок. В статье высказывается гипотеза о причинах феномена «горячих теней» — наиболее таинственного и малоисследованного процесса, наблюдаемого в атмосфере гигантской планеты.

    • Страницы
    • 1
    • 2
    • 3


  • Прошло без малого сто лет с того момента, как были открыты космические лучи-потоки заряженных частиц, приходящих из глубин Вселенной. С тех пор сделано много открытий, связанных с космическими излучениями, но и загадок остается еще немало. Одна из них, возможно, наиболее интригующая: откуда берутся частицы с энергией более
    1020 эВ, то есть почти миллиард триллионов электрон-вольт, в миллион раз большей, чем будет получена в мощнейшем ускорителе — Большом адронном коллайдере (LHC)? Какие силы и поля разгоняют частицы до таких чудовищных
    энергий?

    • Страницы
    • 1
    • 2