Тайны вселенной. Симметрия и взаимодействия

Чт, 07/25/2013 - 21:10

Как и электричество, магнетизм в природе обнаружили древние греки. Примерно к 600 году до нашей эры им были известны свойства магнитного железняка (оксида железа). Примерно через 500 лет китайцы открыли интересную способность магнитного железняка определенным образом ориентироваться в пространстве и создали первый примитивный компас. Затем к концу XVI века Гильбертом было доказано, что Земля ведет себя как большой магнит с двумя полюсами, и что, как и в примере с электричеством, одноименные полюса отталкиваются, а противоположные притягиваются. Однако в отличие от электрических зарядов магнитные полюса встречаются не по отдельности, а только парами — северный полюс и южный полюс. Если стержень магнита разрезать пополам, то на месте разреза возникнут новые полюса, то есть получится два новых магнита. Все попытки ученых получить изолированный магнитный полюс — монополь — заканчивались неудачей.

В начале XIX века датский физик Ханс Кристиан Эрстед открыл то, что электрический ток создает вокруг себя магнитное поле, тогда как Майкл Фарадей показал, что переменное магнитное поле индуцирует в проводнике электрический ток.

Со слабым взаимодействием человечество познакомилось, так и не осознав этого события. В 1054 году китайские астрономы отметили появление яркой голубой звезды в той области неба, где раньше не наблюдалось ничего. Соперничая в блеске даже с планетами, звезда ярко светила на протяжении нескольких недель, а затем стала медленно угасать. Современные астрономы считают эту вспышку взрывом сверхновой — гигантским по силе взрывом старой звезды, вызванным внезапным коллапсом ее ядра, который сопровождается кратковременным испусканием огромного количества нейтрино.

Эти нейтрино, обладающие только слабым взаимодействием, тем не менее, разметали наружные слои звезды в космическом пространстве, образовав клочья облаков расширяющегося газа. Ныне сверхновая наблюдается в виде туманного светлого пятнышка в созвездии Тельца. Сверхновые — один из немногих случаев зримого проявления слабого взаимодействия. Это взаимодействие настолько мало, что оно значительно уступает по величине всем взаимодействиям, кроме гравитационного, и в системах, где оно присутствует, его эффекты оказываются в тени электромагнитного и сильного взаимодействия.

В 1886 году, когда Анри Беккерель, исследуя загадочное почернение фотографической пластинки, оставшейся в ящике письменного стола с кристаллами сульфата урана, случайно открыл радиоактивность.

В свою очередь, Эрнест Резерфорд, исследуя радиоактивное излучение, установил, что радиоактивные атомы испускают частицы двух различных типов, которые назвал альфа и бета.

Как затем выяснилось, тяжелые положительные заряженные альфа-частицы представляют собой быстро движущиеся ядра гелия, а бета-частицы оказались летящими с большой скоростью электронами.


Исаак Ньютон
(4.01.1643 — 31.03.1727)
Английский математик, механик, астроном и физик, создатель класси­ческой механики. Разработал (независимо от Г.Лейбница) дифференциальное и интегральное исчисления. Открыл дисперсию света, хроматическую аберрацию, исследовал интерференцию и дифракцию, развивал корпускулярную теорию света, высказал гипотезу, сочетавшую корпускулярные и волновые представления. Построил зеркальный телескоп. Сформулировал основные законы классической механики. Открыл закон всемирного тяготения, дал теорию движения небесных тел, создав основы небесной механики. Пространство и время считал абсолютными. Был директором Монетного двора, наладил монетное дело в Англии

Именно в бета-распаде крылась странная особенность. Казалось, что в этом распаде нарушается один из фундаментальных законов физики — закон сохранения энергии, то есть часть ее куда-то исчезает. Но на “выручку” закону пришел Вольфганг Паули, который предположил, что вместе с электроном при бета-распаде вылетает еще одна частица, вследствие чего она-то и уносит недостающую энергию.

Эта частица нейтральная и обладает необычно высокой проникающей способностью, поэтому ее долгое время не могли наблюдать. Энрико Ферми назвал частицу-невидимку — нейтрино, что означает “маленькая нейтральная частица”.

Но на этом загадки не прекращались. Физики располагали неопровержимыми доказательствами, что внутри ядра таких частиц нет. Откуда ж они возникли? Ферми предположил, что электроны и нейтрино до своего вылета не существуют в ядре в “готовом виде”, а каким-то образом мгновенно образуются из энергии, запасенной радиоактивным ядром. Свойства нейтронов подтверждали гипотезу Ферми — нейтроны, предоставленные сами себе, через несколько минут распадаются на протоны, электроны и нейтрино. Бета-распад вызывается какой-то неизвестной силой, когда одна частица исчезает, а вместо нее появляются три новые. Измерение скорости бета-распадов показали, что соответствующее этой силе взаимодействие чрезвычайно слабое, гораздо слабее электромагнитного, хотя и гораздо сильнее гравитационного. По своему характеру слабое взаимодействие совершенно не похоже на другие виды взаимодействий.

Во-первых, если не считать таких явлений, как взрывы сверхновых, оно не создает тянущих или толкающих усилий в том смысле, как это принято понимать в механике. Слабое взаимодействие вызывает превращения одних частиц в другие, часто приводя продукты реакции в движение с высокими скоростями.
Во-вторых, оно ощутимо только в областях пространства чрезвычайно малой протяженности. В отличие от “дальнодействующих” гравитации и электромагнетизма, слабое взаимодействие прекращается на расстоянии, большем 10-16 см от источника, следовательно, оно не может влиять на макроскопические объекты, а ограничивается отдельными субатомными частицами.

По мере того, как прояснялась структура атомного ядра, возникал вопрос, какая сила удерживает протоны в ядре, не позволяя им разлетаться под действием электростатического отталкивания. Гравитация для этого слишком слаба, кроме того, очевидно, необходимо какое-то новое взаимодействие, более сильное, чем электромагнитное. Это взаимодействие получило название сильное взаимодействие.

Но за пределами ядра сильное ядерное притяжение не ощущается, поэтому радиус действия новой силы должен быть очень мал. Действительно, сильное взаимодействие резко падает на расстоянии от протона или нейтрона, превышающим примерно 10-13 см. Таким образом, хотя по своей величине сильное взаимодействие существенно превосходит все остальные фундаментальные взаимодействия, оно не может непосредственно проявляться в макроскопических телах. Сильное взаимодействие испытывают протоны и нейтроны, нейтрино и фотоны, но не электроны. Вследствие своей большой величины сильное взаимодействие является источником огромной энергии. По-видимому, наиболее важный пример энергии, высвобождаемой сильным взаимодействием, — это свечение Солнца. В недрах Солнца и звезд непрерывно протекают термоядерные реакции, вызываемые сильным взаимодействием. Именно в результате этого взаимодействия высвобождается энергия водородной бомбы.

Объяснить природу сильного взаимодействия ученые смогли в начале 60-х годов XX столетия при помощи кварковой модели. В этой теории нейтроны и протоны рассматриваются не как элементарные частицы, а как составные системы, построенные из трех кварков.


Майкл Фарадей
(22.11.1791 — 25.08.1867)
Английский физик, основоположник учения об электромагнитном поле.Обнаружил химическое действие электрического тока, взаимосвязь между электричеством и магнетизмом, магнетизмом и светом. Открыл (1831) электромагнитную индукцию, установил законы электролиза. Ввел понятия электрического и магнитного поля, высказал идею существования электромагнитных волн

Чтобы это “трио” кварков не распадалось, необходима удерживающая их сила, некий “клей”. Оказалось, что результирующее взаимодействие между нейтронами и протонами представляет собой просто остаточный эффект более мощного взаимодействия между кварками. То есть, когда протон “прилипает” к нейтрону или другому протону, во взаимодействии участвуют шесть кварков, каждый из которых взаимодействует со всеми остальными. Значительная часть сил тратится на прочное склеивание трио кварков, а небольшая — на скрепление двух трио кварков друг с другом.
Подобное описание выявило аналогии между сильным и другими взаимодействиями, указав тем самым на существование объединяющей все взаимодействия суперсилы.

Другие материалы рубрики


  • ...Уходить от Солнца на еще большее расстояние, по подсчетам швейцарского астрофизика, нет смысла. Потому что в стадии красного гиганта Солнце пробудет всего несколько миллионов лет, а затем станет снова быстро сжиматься, превратится в белого карлика и начнет деградировать как источник энергии. И тогда Земле, чтобы получать достаточное количество тепла и света, понадобится орбита меньшая, чем сейчас у Меркурия. Но при таком приближении к светилу силы притяжения довольно скоро остановят вращение Земли вокруг ее оси. Планета будет повернута к Солнцу всегда одной стороной. Значит, жизнь на Земле быстро погибнет: на ночной стороне — от тьмы и холода, а на освещенной — от жары и губительного для всего живого ультрафиолетового и рентгеновского излучения, идущего от белого карлика.

    • Страницы
    • 1
    • 2
    • 3


  • Юпитер называют планетой загадок. В статье высказывается гипотеза о причинах феномена «горячих теней» — наиболее таинственного и малоисследованного процесса, наблюдаемого в атмосфере гигантской планеты.

    • Страницы
    • 1
    • 2
    • 3


  • ...Теперь вы должны быть предельно внимательны. Следующие несколько секунд окажутся решающими, поэтому вы включаете высокоскоростную регистрирующую систему для детальной записи всех приходящих сведений. Через 61 с R3D3 сообщает, что все системы пока функционируют нормально, горизонт - на расстоянии 8000 км и приближается со скоростью 15 тыс. км/с. Проходит 61,6 с. Еще все в порядке, до горизонта осталось 2000 км, скорость - 30 тыс. км/с (или 0,1 скорости света, так что цвет излучения начинает меняться все заметнее). А затем, в течение следующей 0,1 с вы с изумлением замечаете, что излучение из зеленого становится красным, инфракрасным, микроволновым, затем приходят радиоволны и наконец все исчезает. Через 61,7 с все кончено - лазерный луч пропал. R3D3 достиг скорости света и исчез за горизонтом.

    • Страницы
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6


  • В своей ранней молодости Марс, похоже, подвергся удару, навсегда изменившему облик планеты. Объект размером с Плутон врезался в планету с севера, разделив ее на две половины — низкий север и высокий юг. Крупнейший кратер Солнечной системы сохранился до наших дней.



  • Давайте вспомним испытание противоспутникового оружия, проведенное 11 января 2007 года Китаем. Почему оно вызвало беспокойство у специалистов космической отрасли? Ведь с 1968-го по 1986-й США и СССР провели свыше 20 таких же испытаний! И с того времени уже было проведено несколько подобных испытаний?! Дело вовсе не в международной безопасности. Или не только в ней.



  • В нашей Галактике за пределами Солнечной системы обнаружено несколько сотен планет. Исследовать их проще и дешевле при помощи автоматических зондов сверхмалого размера. Запускать эти аппараты можно с Земли из электромагнитной пушки, а ускорять и корректировать орбиты будут гравитационные поля встречных звезд.
    Полеты к звездам — любимая тема фантастов и авторов компьютерных игр. Лихо носятся их звездолеты на просторах Галактики! Вот только неясно — как и зачем? Но эти вопросы не очень волнуют любознательных читателей: «как» — это придумают инженеры, а уж «зачем» — вообще неприлично спрашивать. Вы только представьте: новые неизведанные миры, братья по разуму... Разве это неинтересно?!
    Но не все фантазии удается воплотить в жизнь. Романтическая эпоха поиска внеземных цивилизаций, рожденная в начале 1960-х успехами космонавтики и радиоастрономии, к концу столетия почти сошла на нет.



  • Космологи в замешательстве. Обычно предметы, брошенные вверх, замедляются. Планеты притягивают объекты, звезды притягивают планеты. Это нормально. Но почему тогда Вселенная расширяется? Отдельные галактики, разбросанные после Большого взрыва в разные стороны, должны притягиваться друг ко другу — и расширение должно замедляться. Но того не происходит: они разлетаются друг от друга с ускорением. Принято считать, что виновата во всем темная энергия, хотя она темная именно оттого, что о ней никто ничего не знает. Но уже ясно точно, что на предельно больших расстояниях гравитация превратилась в отталкивающую силу, а не в притягивающую.

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • Существует небольшой шанс, что через 3,34 миллиарда лет Марс столкнется с Землей. Также есть вероятность столкновения Земли и Венеры или Меркурия и Венеры. Меркурий вообще может упасть на Солнце или улететь в межзвездное пространство. Таковы причуды нашей системы, новые тайны которой раскрыли ученые.
    Подробнейшее численное моделирование эволюции орбит в Солнечной системе выполнили профессор Жак Ласкар (Jacques Laskar) и Микаэль Гастино (Mickael Gastineau) из Парижской обсерватории (Observatoire de Paris).
    Долгое время астрономы полагали, что орбиты планет в Солнечной системе стабильны и неизменны. Потом стали появляться сведения, что на заре зарождения системы орбиты ряда планет сильно отличались от нынешних и претерпевали большие изменения, прежде чем все «устоялось».



  • Итак, знакомимся с действующими лицами драмы. Коричневый карлик 2M1207 спектрального класса M8 (его можно увидеть хорошо вооруженным глазом в созвездии Центавр) и его небольшой компаньон — планета 2M1207b. Последняя уже несколько лет как мучает ученых своими загадками. И вот теперь новейшее исследование позволило предположить: странные особенности данного объекта объясняются тем, что он рожден в результате совсем недавнего столкновения двух планет.



  • Объект, отснятый близ звезды, сходной с Солнцем, не вписывается в привычные теории формирования планет. Специалистам еще предстоит разобраться с особенностями рождения этого странного мира, а широкая публика просто любуется снимками. Еще бы — не каждый день можно увидеть планету другой звезды, пусть и открыты их сотни.
    Звезда 1RXS J160929.1-210524 расположена примерно в 500 световых лет от нас. Она очень похожа на Солнце. Ее «вес» равен 85% массы нашей родной звезды. Правда, это светило значительно моложе нашего — 210524 возникла порядка пяти миллионов лет назад.
    Новая планета, по расчетам астрономов, обладает массой примерно в восемь масс Юпитера. И она не была бы такой уж уникальной, если б не два обстоятельства. Первое — она «вживую» запечатлена на снимках. А о втором скажем позже.
    Впервые астрономы непосредственно увидели объект планетарной массы на орбите вокруг звезды, такой как Солнце, и если подтвердится, что этот объект действительно гравитационно привязан к звезде, это будет крупным шагом вперед.
    Интригу, впрочем, принесло не яркое достижение наблюдательной астрономии как таковое, а выявленные параметры системы.