Тайны вселенной. Симметрия и взаимодействия

Чт, 07/25/2013 - 21:10

Как и электричество, магнетизм в природе обнаружили древние греки. Примерно к 600 году до нашей эры им были известны свойства магнитного железняка (оксида железа). Примерно через 500 лет китайцы открыли интересную способность магнитного железняка определенным образом ориентироваться в пространстве и создали первый примитивный компас. Затем к концу XVI века Гильбертом было доказано, что Земля ведет себя как большой магнит с двумя полюсами, и что, как и в примере с электричеством, одноименные полюса отталкиваются, а противоположные притягиваются. Однако в отличие от электрических зарядов магнитные полюса встречаются не по отдельности, а только парами — северный полюс и южный полюс. Если стержень магнита разрезать пополам, то на месте разреза возникнут новые полюса, то есть получится два новых магнита. Все попытки ученых получить изолированный магнитный полюс — монополь — заканчивались неудачей.

В начале XIX века датский физик Ханс Кристиан Эрстед открыл то, что электрический ток создает вокруг себя магнитное поле, тогда как Майкл Фарадей показал, что переменное магнитное поле индуцирует в проводнике электрический ток.

Со слабым взаимодействием человечество познакомилось, так и не осознав этого события. В 1054 году китайские астрономы отметили появление яркой голубой звезды в той области неба, где раньше не наблюдалось ничего. Соперничая в блеске даже с планетами, звезда ярко светила на протяжении нескольких недель, а затем стала медленно угасать. Современные астрономы считают эту вспышку взрывом сверхновой — гигантским по силе взрывом старой звезды, вызванным внезапным коллапсом ее ядра, который сопровождается кратковременным испусканием огромного количества нейтрино.

Эти нейтрино, обладающие только слабым взаимодействием, тем не менее, разметали наружные слои звезды в космическом пространстве, образовав клочья облаков расширяющегося газа. Ныне сверхновая наблюдается в виде туманного светлого пятнышка в созвездии Тельца. Сверхновые — один из немногих случаев зримого проявления слабого взаимодействия. Это взаимодействие настолько мало, что оно значительно уступает по величине всем взаимодействиям, кроме гравитационного, и в системах, где оно присутствует, его эффекты оказываются в тени электромагнитного и сильного взаимодействия.

В 1886 году, когда Анри Беккерель, исследуя загадочное почернение фотографической пластинки, оставшейся в ящике письменного стола с кристаллами сульфата урана, случайно открыл радиоактивность.

В свою очередь, Эрнест Резерфорд, исследуя радиоактивное излучение, установил, что радиоактивные атомы испускают частицы двух различных типов, которые назвал альфа и бета.

Как затем выяснилось, тяжелые положительные заряженные альфа-частицы представляют собой быстро движущиеся ядра гелия, а бета-частицы оказались летящими с большой скоростью электронами.


Исаак Ньютон
(4.01.1643 — 31.03.1727)
Английский математик, механик, астроном и физик, создатель класси­ческой механики. Разработал (независимо от Г.Лейбница) дифференциальное и интегральное исчисления. Открыл дисперсию света, хроматическую аберрацию, исследовал интерференцию и дифракцию, развивал корпускулярную теорию света, высказал гипотезу, сочетавшую корпускулярные и волновые представления. Построил зеркальный телескоп. Сформулировал основные законы классической механики. Открыл закон всемирного тяготения, дал теорию движения небесных тел, создав основы небесной механики. Пространство и время считал абсолютными. Был директором Монетного двора, наладил монетное дело в Англии

Именно в бета-распаде крылась странная особенность. Казалось, что в этом распаде нарушается один из фундаментальных законов физики — закон сохранения энергии, то есть часть ее куда-то исчезает. Но на “выручку” закону пришел Вольфганг Паули, который предположил, что вместе с электроном при бета-распаде вылетает еще одна частица, вследствие чего она-то и уносит недостающую энергию.

Эта частица нейтральная и обладает необычно высокой проникающей способностью, поэтому ее долгое время не могли наблюдать. Энрико Ферми назвал частицу-невидимку — нейтрино, что означает “маленькая нейтральная частица”.

Но на этом загадки не прекращались. Физики располагали неопровержимыми доказательствами, что внутри ядра таких частиц нет. Откуда ж они возникли? Ферми предположил, что электроны и нейтрино до своего вылета не существуют в ядре в “готовом виде”, а каким-то образом мгновенно образуются из энергии, запасенной радиоактивным ядром. Свойства нейтронов подтверждали гипотезу Ферми — нейтроны, предоставленные сами себе, через несколько минут распадаются на протоны, электроны и нейтрино. Бета-распад вызывается какой-то неизвестной силой, когда одна частица исчезает, а вместо нее появляются три новые. Измерение скорости бета-распадов показали, что соответствующее этой силе взаимодействие чрезвычайно слабое, гораздо слабее электромагнитного, хотя и гораздо сильнее гравитационного. По своему характеру слабое взаимодействие совершенно не похоже на другие виды взаимодействий.

Во-первых, если не считать таких явлений, как взрывы сверхновых, оно не создает тянущих или толкающих усилий в том смысле, как это принято понимать в механике. Слабое взаимодействие вызывает превращения одних частиц в другие, часто приводя продукты реакции в движение с высокими скоростями.
Во-вторых, оно ощутимо только в областях пространства чрезвычайно малой протяженности. В отличие от “дальнодействующих” гравитации и электромагнетизма, слабое взаимодействие прекращается на расстоянии, большем 10-16 см от источника, следовательно, оно не может влиять на макроскопические объекты, а ограничивается отдельными субатомными частицами.

По мере того, как прояснялась структура атомного ядра, возникал вопрос, какая сила удерживает протоны в ядре, не позволяя им разлетаться под действием электростатического отталкивания. Гравитация для этого слишком слаба, кроме того, очевидно, необходимо какое-то новое взаимодействие, более сильное, чем электромагнитное. Это взаимодействие получило название сильное взаимодействие.

Но за пределами ядра сильное ядерное притяжение не ощущается, поэтому радиус действия новой силы должен быть очень мал. Действительно, сильное взаимодействие резко падает на расстоянии от протона или нейтрона, превышающим примерно 10-13 см. Таким образом, хотя по своей величине сильное взаимодействие существенно превосходит все остальные фундаментальные взаимодействия, оно не может непосредственно проявляться в макроскопических телах. Сильное взаимодействие испытывают протоны и нейтроны, нейтрино и фотоны, но не электроны. Вследствие своей большой величины сильное взаимодействие является источником огромной энергии. По-видимому, наиболее важный пример энергии, высвобождаемой сильным взаимодействием, — это свечение Солнца. В недрах Солнца и звезд непрерывно протекают термоядерные реакции, вызываемые сильным взаимодействием. Именно в результате этого взаимодействия высвобождается энергия водородной бомбы.

Объяснить природу сильного взаимодействия ученые смогли в начале 60-х годов XX столетия при помощи кварковой модели. В этой теории нейтроны и протоны рассматриваются не как элементарные частицы, а как составные системы, построенные из трех кварков.


Майкл Фарадей
(22.11.1791 — 25.08.1867)
Английский физик, основоположник учения об электромагнитном поле.Обнаружил химическое действие электрического тока, взаимосвязь между электричеством и магнетизмом, магнетизмом и светом. Открыл (1831) электромагнитную индукцию, установил законы электролиза. Ввел понятия электрического и магнитного поля, высказал идею существования электромагнитных волн

Чтобы это “трио” кварков не распадалось, необходима удерживающая их сила, некий “клей”. Оказалось, что результирующее взаимодействие между нейтронами и протонами представляет собой просто остаточный эффект более мощного взаимодействия между кварками. То есть, когда протон “прилипает” к нейтрону или другому протону, во взаимодействии участвуют шесть кварков, каждый из которых взаимодействует со всеми остальными. Значительная часть сил тратится на прочное склеивание трио кварков, а небольшая — на скрепление двух трио кварков друг с другом.
Подобное описание выявило аналогии между сильным и другими взаимодействиями, указав тем самым на существование объединяющей все взаимодействия суперсилы.

Другие материалы рубрики


  • Наблюдения на рентгеновской обсерватории «Чандра» показали наличие большого числа маломассивных рентгеновских двойных звезд в эллиптических и линзовидных галактиках, а также в балджах — центральных сферических компонентах — дисковых галактик. Распределение источников по светимостям хорошо описывается двумя компонентами, граница между которыми соответствует светимости порядка (2-3) 1038 эрг/с. Т.к. эта величина примерно соответствует максимальной (т.н. Эддингтоновской) светимости объекта с массой 1.4 Мо, то возможно, что более мощные источники являются аккрецирующими черными дырами, а менее мощные — нейтронными звездами. Т.о. с некоторой долей уверенности можно говорить, что мы видим в галактиках ранних типов — эллиптических и линзовидных — тесные двойные системы как с черными дырами (самые яркие источники), так и с нейтронными звездами (менее яркие).



  • За последнее время вблизи Земли пролетели несколько сравнительно крупных небесных тел. Сильную тревогу вызвало в 1936 г. прохождение астероида Адонис на расстоянии около 2 млн. км от Земли. А настоящую панику вызвал в 1937 г. астероид Гермес, имеющий диаметр ≈1,5 км, промчавшийся лишь на расстоянии 800 тыс. км от Земли (удвоенное расстояние до Луны). Позже (в 1992 г.) большой ажиотаж был связан с приближением к Земле малой планеты Тоутатис. Астероид диаметром около полукилометра пролетел мимо Земли 19 мая 1996 г. на расстоянии всего 450 тыс. км.

    • Страницы
    • 1
    • 2
    • 3


  • Этот взрыв потряс не только часть Вселенной, но и земную астрономию! Громадная звезда вдруг стала сверхновой, и ее разорвало на куски с таким шиком, что даже бывалые астрономы заявили, что никогда такого не видали. А ведь должна была вести себя тихо-тихо. Ученые подозревают, что такое разрушительное событие может в любой момент повториться у нас прямо под боком. Возможно, даже завтра. Или прямо сейчас.



  • В кинокомедии «Карнавальная ночь» один из персонажей — лектор — сообщает: «Есть ли жизнь на Марсе, нет ли жизни на Марсе, науке не известно». С тех пор прошло почти полвека, но это утверждение справедливо и сегодня. Однако не менее справедливо и другое: «Где есть вода — там есть и жизнь». Сегодня с большой долей уверенности можно сказать: вода на Марсе есть. Дело за малым — отыскать там жизнь.


  • Эксперты ООН в ежегодных докладах публикуют данные, говорящие, что Землю в перспективе ждет катастрофическое глобальное потепление, обусловленное возрастающими выбросами углекислого газа в атмосферу. Однако наблюдение за Солнцем позволяет утверждать, что в повышении температуры углекислый газ «не виноват» и в ближайшие десятилетия нас ждет не катастрофическое потепление, а глобальное, и очень длительное, похолодание.

    • Страницы
    • 1
    • 2
    • 3
    • 4
    • 5


  • Юпитер называют планетой загадок. В статье высказывается гипотеза о причинах феномена «горячих теней» — наиболее таинственного и малоисследованного процесса, наблюдаемого в атмосфере гигантской планеты.

    • Страницы
    • 1
    • 2
    • 3


  • О спонтанном возникновении вещества из пустого пространства говорят как о рождении “из ничего”, которое близко по духу рождению ex nihilo в христианской доктрине. Для физики пустое пространство совсем не “ничего”, а весьма существенная часть Вселенной, а мысль о рождении самого пространства может показаться вообще странной. Однако в каком-то смысле это все время происходит вокруг нас. Расширение Вселенной есть не что иное, как непрерывное “разбухание” пространства. С каждым днем доступная современным телескопам область Вселенной возрастает на 1018 кубических световых лет. Здесь полезна аналогия с резиной. Если упругий резиновый жгут вытянуть, его “становится больше”. Пространство напоминает суперэластик тем, что оно, насколько известно физикам, может неограниченно долго растягиваться не разрываясь. Растяжение и искривление пространства напоминает деформацию упругого тела тем, что “движение” пространства происходит по законам механики точно так же, как и движение обычного вещества. В данном случае это законы гравитации. Квантовая теория в равной мере применима как к веществу, так и к пространству и к времени.
    Действительно, благодаря собственной физической природе Вселенная возбуждает в себе всю энергию, необходимую для “создания” материи — это есть космический бутстрэп (bootstrap — в переводе “зашнуровка”, в переносном смысле — отсутствие иерархии в системе элементарных частиц).



  • Космологи в замешательстве. Обычно предметы, брошенные вверх, замедляются. Планеты притягивают объекты, звезды притягивают планеты. Это нормально. Но почему тогда Вселенная расширяется? Отдельные галактики, разбросанные после Большого взрыва в разные стороны, должны притягиваться друг ко другу — и расширение должно замедляться. Но того не происходит: они разлетаются друг от друга с ускорением. Принято считать, что виновата во всем темная энергия, хотя она темная именно оттого, что о ней никто ничего не знает. Но уже ясно точно, что на предельно больших расстояниях гравитация превратилась в отталкивающую силу, а не в притягивающую.

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • Судя по многочисленным публикациям, посвященным современной астрофизике, она находится на подъеме. Положение дел даже сравнивают с революционной ситуацией, сложившейся в физике в начале прошлого века. Но если тогда истина рождалась в спорах, сейчас новые понятия проникают в астрофизику практически без сопротивления. При этом ключевые положения старой теории, вместо того, чтобы обрести окончательную ясность, заменяются наборами гипотез. Современный астрофизик подробно объяснит, что такое космологический вакуум или антигравитация, но на вопрос о происхождении галактик даст расплывчатый ответ, включающий несколько возможных сценариев.

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • Наблюдая и изучая особенности Млечного Пути, астрономы долгое время не могли понять общую структуру и историю нашей Галактики. До 1920 г. ученые не были уверены, что Галактика — отдельный объект, один из миллиардов подобных. К середине 50-х гг. они наконец составили план Галактики, представляющий собой величественный диск из звезд и газа. В 60-х гг. теоретики считали, что наша Галактика сформировалась на раннем этапе космической истории — по новейшим оценкам, около 13 млрд. лет назад — и с той поры не претерпевала существенных изменений.

    • Страницы
    • 1
    • 2
    • 3
    • 4
    • 5