Тайны вселенной. Сумасшедшая физика

Ср, 06/26/2013 - 19:42

Рис. 6. Линейный ускоритель в Станфорде (штат Калифорния, США)

Рис. 7. проходя вблизи солнца, свет от звезды заметно отклоняется из-за вызванного Солнцем искривления пространства. В результате наблюдаемое положение звезды на небе несколько смещено относительно реального.

Рис. 8. Двойная проволочная петля дает весьма приблизительное представление о свойствах собственного спина. При перемещении на 360˚ бусина не возвращается в исходное положение – для этого необходимо еще один оборот по проволоке на 360˚. Но на расстоянии столь тонкая особенность не заметна.

К примеру, если один наблюдатель движется относительно другого, то при измерении длины одного и того же объекта они получают разные значения. И это несмотря на то, что в состоянии покоя оба наблюдателя при измерении длины данного объекта получат в точности один и тот же результат. Уменьшение расстояния с увеличением скорости, близкой к скорости света, называется эффектом сокращения длин Лоренца – Фитцджеральда, являющимся одним из основополагающих результатов теории относительности. Линейный ускоритель частиц в Станфорде (штат Калифорния, США) представляет собой прямолинейную трубу длиною около 3 км, но движущиеся в ней электроны обладают скоростями, столь близкими к скорости света, что в их “системе отсчета” длина ускорителя едва достигает 0,3 м (рис. 6).

Если теория относительности лишает смысла понятие расстояния, то квантовая механика ставит под сомнение, основанное на здравом смысле понятие местоположения. То есть, другими словами, может ли существовать частица, не находясь где-то?! Источник всех “неясностей” с местоположением частицы заключается в одном фундаментальном правиле квантовой механики, называемом принципом неопределенности Вернера Гейзенберга, немецкого физика, одного из основоположников квантовой физики. Согласно этому принципу, невозможно одновременно точно определить обе характеристики, например, электрона – положение и скорость, а вот по отдельности – пожалуйста. Независимо от способа измерения сам акт наблюдения местоположения электрона не предсказуемым образом нарушает его движение. Точно так же измерение импульса электрона “смазывает” данные о его местоположении. Таким образом, эти два типа измерений просто несовместимы. Все это говорит о том, насколько нелепа попытка представить себе мир атома как пространство, “населенное” вращающимися шариками.

Если отсутствует способность “прикрепить” частицу к определенному месту, то в случае нескольких частиц возникают необычные эффекты. Когда два атома образуют молекулу, на движение электронов вокруг одного из атомов оказывает воздействие другой атом, в результате чего между атомами возникает сила притяжения. Отчасти она обусловлена тем, что данный электрон одного атома не отличим от электронов другого, а из-за размытости их положения ничто не препятствует этим электронам время от времени меняться местами, то есть два электрона из разных атомов могут взаимно заменять друг друга. Но это еще не все. При более тщательном рассмотрении выясняется, что не только размыто положение частицы в пространстве, но и самому пространству присуща размытость. Когда неизвестно где находится частица – это плохо, но когда неизвестны, где расположены точки пространства, то рушатся все представления о геометрии.

В 1915 году Эйнштейн раскрыл этот секрет, который заключается в особых свойствах гравитации, а именно: он обобщил теорию относительности, которая предсказала возможное сжатие и растягивание пространства и времени в зависимости от движения наблюдателя, включая гравитационные явления, то есть гравитация представляет собой просто геометрию пустого пространства и времени. Более верно к истине целесообразней сказать, что гравитация – это искривленное пространство-время. Если быть более точным, то пространство может не только растягиваться и сжиматься, но и скручиваться, и изгибаться в причудливые формы.

Реально это выглядит следующим образом. Возьмем, к примеру, воздействие гравитационного поля Солнца на пространство в его ближайшей окрестности (рис. 7). Так, во время полного солнечного затмения, когда диск Солнца заслонен Луной, можно наблюдать небольшие отклонения в положениях звезд, расположенных на небе вблизи Солнца, по сравнению с их координатами, зафиксированными в астрономических атласах. Световые лучи, идущие от звезд, заметно отличаются от прямолинейных, что обусловлено искривлением пространства Солнцем.

Другие материалы рубрики


  • ...Теории, которые пытаются объединить все четыре типа взаимодействия, называют «Универсальными теориями», «Теориями всего сущего» или «Теорией великого объединения». Если бы у нас была такая теория, то это бы означало, что человечеству удалось построить замкнутую физическую картину мира, она бы включала в себя все базовые принципы и законы мироздания, и во всей Вселенной уже не было бы того, что мы не можем понять и описать. Эта заветная цель современной физики пока еще далека от того, чтобы быть достигнутой, но уже сейчас делаются попытки построения таких теорий...

    • Страницы
    • 1
    • 2


  • В 1905 г. Альберт Эйнштейн предложил частную теорию относительности и опроверг представление о свете как о колебаниях гипотетической среды — эфира. Великий физик утверждал, что, в отличие от звуковых, световые волны могут распространяться в вакууме и для их существования не требуется какой-либо материальной среды. Это справедливо и в общей теории относительности, и в квантовой механике. Вплоть до сегодняшнего дня все экспериментальные данные в масштабах от субъядерного до галактического успешно объясняются названными теориями.
    Тем не менее существует серьезная концептуальная проблема: с позиций современной науки общая теория относительности и квантовая механика несовместимы. Гравитация, которую общая теория относительности приписывает искривлению пространственно-временного континуума, никак не вписывается в рамки квантовой механики. Физики сделали лишь небольшой шаг к пониманию сильно искривленной структуры пространства-времени, которая, согласно квантовой механике, должна наблюдаться на чрезвычайно малых расстояниях.

    • Страницы
    • 1
    • 2


  • Шаровая молния — светящийся шар, который порой возникает при разряде линейной молнии, — одно из самых загадочных атмосферных явлений. Природа шаровой молнии до сих пор неизвестна, хотя первая научная публикация на эту тему — книга «Гром и молния» известного французского физика и астронома Франсуа Араго — была издана еще в 1838 году. Предлагаемая гипотеза — попытка объяснить механизм образования шаровой молнии на основе физики плазмы и газового разряда.

    • Страницы
    • 1
    • 2
    • 3


  • Около 40 лет назад ученый В. Веселаго предположил, что существуют материалы, у которых показатель преломления имеет отрицательную величину. Световые волны в таком веществе могут передвигаться против движения распространения светового луча и вести себя нестандартно. Линзы, которые изготовлены из такого материала, — иметь чуть ли не волшебные характеристики. Но Веселаго в процессе своей работы и многолетних поисков не обнаружил ни одного вещества, имеющего подходящие электромагнитные свойства, у всех исследованных им материалов показатель преломления оказался положительным. Потому о его идее вскоре забыли. Вспомнили о ней только в начале 21 века.

    • Страницы
    • 1
    • 2


  • Научно-технический прогресс — один из главных рычагов создания материально-технической базы будущего нашей страны, который возможен только на основе своевременного внедрения достижений современной науки путем использования всего арсенала средств, способствующих его ускорению.
    Революционные изменения в технике, на основе обновленных знаний, происходят в последние десятилетия столь стремительно, что часто приходится только удивляться новинкам. Творчество вечно, но, к сожалению, технические идеи часто остаются невостребованными.

    • Страницы
    • 1
    • 2


  • Очевидные успехи в развитии науки и техники в XIX и ХХ веках вызвало в мировом общественном сознании некую эйфорию, уверенность в том, что человек стал властелином Природы, что его знания об устройстве окружающего Мира почти абсолютны, что человек может все. И действительно, изобретение в конце 18 века паровой машины существенно изменило жизнь общества, в значительной мере освободив его от утомительного физического труда, заложило основы современной промышленности и транспорта. Постулирование Исааком Ньютоном на рубеже 17 и 18 веков его трех принципов движения материальных тел и закона всемирного тяготения, создание начал дифференциального исчисления вызвало к жизни целый ряд научных открытий. Трудами нескольких поколений ученых в 18-19 столетиях была построена научная дисциплина, очертившая основы машиностроительной и технологической культуры нашей цивилизации, называемая сегодня теоретической механикой. Далее последовали фундаментальные открытия в области астрономии, физики, химии, получившие выход в различные области технических приложений — металлургию, строительство, транспорт, химическое производство, энергетику, судостроение, электротехнику, проводную и беспроводную связь, военное дело. Быстро развивались биология и медицина.

    • Страницы
    • 1
    • 2
    • 3
    • 4
    • 5


  • Как родилась и эволюционирует наша Вселенная? Почему кольца Сатурна такие тонкие, но протяженные? Почему активность Солнца изменяется периодически с периодом около 11 лет? Что вызвало гибель динозавров? Отчего нас так пугают ослепительные вспышки молний, оглушительные удары грома, неистовые землетрясения, разбушевавшиеся вулканы? Отчего во время шторма возникает «девятый вал»? Почему цунами — столь грозная стихия? Почему рельеф снежных заносов волнистый? Почему у ягуара тело пятнистое, а хвост полосатый? И что объединяет эти совершенно не связанные между собой явления? Оказывается, все они — результат нелинейности.



  • Ответ на вопрос, поставленный в заголовке, кажется очень простым... Действительно, стоит взять любую популярную книгу по авиации и даже некоторые издания, претендующие на роль учебника, как сразу натолкнетесь на уже ставшую хрестоматийной притчу о двух частицах воздуха, бегущих в струйках по крылу и встречающихся на задней кромке...

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • Термин «фотополимер» традиционно связывают со стоматологами, а также с чем-то инновационным и надежным. Первая волна моды на эти материалы, похоже, прошла, но вскоре, очевидно, сменится второй. Пока сдерживающим фактором выступают дороговизна или неразвитость производства компонентов. Но как не раз было в производстве пластмасс, подобные затруднения иногда решаются одним патентом в течение полугода, после чего идет рост популярности материала.

    Теоретические вопросы фотополимеризации композиций изобилуют спецтерминами. Наиболее уместно разделить их на фотосшиваемые и фотополимеризуемые материалы. Фотосшиваемые материалы уже являются полуполимерами (например, эфиры ПВС и коричной кислоты, поливинилциннаматы), для окончательного сшивания которых требуется облучение. Фотополимеризующиеся — как правило, композиции нескольких отверждаемых олигомеров и мономеров, полимеризующихся по классическому механизму при помощи фотоинициаторов или фотоинициируемых групп в своей полимерной цепи.

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • ...Состояние в сверхпроводнике 1-го рода, когда сверхпроводящие домены соседствуют в материале с нормальными областями, называется промежуточным. Такое состояние может возникать при значениях индукции приложенного поля, лежащих в интервале (1–D)Bc < B < Bc, где размагничивающий фактор D определяется формой образца. Интервал изменения размагничивающего фактора — от нуля (для длинного цилиндра или тонкой пластины в параллельном поле) до единицы (для плоскопараллельной пластины в случае, когда поле приложено перпендикулярно ее поверхности)...

    • Страницы
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6