Тайны Вселенной. Заключение

Ср, 07/31/2013 - 18:46

Сидней Коулмен



О спонтанном возникновении вещества из пустого пространства говорят как о рождении “из ничего”, которое близко по духу рождению ex nihilo в христианской доктрине. Для физики пустое пространство совсем не “ничего”, а весьма существенная часть Вселенной, а мысль о рождении самого пространства может показаться вообще странной. Однако в каком-то смысле это все время происходит вокруг нас. Расширение Вселенной есть не что иное, как непрерывное “разбухание” пространства. С каждым днем доступная современным телескопам область Вселенной возрастает на 1018 кубических световых лет. Здесь полезна аналогия с резиной. Если упругий резиновый жгут вытянуть, его “становится больше”. Пространство напоминает суперэластик тем, что оно, насколько известно физикам, может неограниченно долго растягиваться не разрываясь. Растяжение и искривление пространства напоминает деформацию упругого тела тем, что “движение” пространства происходит по законам механики точно так же, как и движение обычного вещества. В данном случае это законы гравитации. Квантовая теория в равной мере применима как к веществу, так и к пространству и к времени.

Действительно, благодаря собственной физической природе Вселенная возбуждает в себе всю энергию, необходимую для “создания” материи — это есть космический бутстрэп (bootstrap — в переводе “зашнуровка”, в переносном смысле — отсутствие иерархии в системе элементарных частиц).

Если частицы вещества, согласно квантовой теории, могут возникнуть “из ничего”, то применительно к гравитации — не будет ли она описывать возникновение “из ничего” и пространства, и не является ли рождение Вселенной около 14 млрд. лет назад примером именно такого процесса?

В настоящее время квантовая теория применяется и к пространству-времени, и к веществу, и к Вселенной в целом. В этом подходе можно усмотреть противоречие: квантовая физика имеет дело с самыми малыми системами, тогда как космология — с самыми большими. Тем не менее, Вселенная когда-то также была ограничена очень малыми размерами и, следовательно, тогда были чрезвычайно важны квантовые эффекты. Результаты вычислений говорят о том, что квантовые законы следует учитывать в эру ТВО (10-32 сек), а в эру Планка (10-43 сек) они, вероятно, должны играть определяющую роль. Как считает Алекс Виленкин из Университета Тафта, между этими двумя эпохами существовал момент времени, когда возникла Вселенная. По словам Сиднея Коулмена из Гарвардского университета, Вселенная совершила квантовый скачок из Ничего во Время.

Главная трудность объяснить происхождение Вселенной состоит в описании процесса ее рождения из состояния ложного вакуума. Если бы вновь возникшее пространство-время оказалось в состоянии истинного вакуума, то инфляция никогда не смогла бы произойти. Большой взрыв свелся бы к слабому всплеску, а пространство-время спустя мгновение снова прекратило бы свое существование — его истребили бы те самые квантовые процессы, благодаря которым оно первоначально возникло. Не окажись Вселенная в состоянии ложного вакуума, она никогда не была бы вовлеченной в космический бутстрэп и не материализовала бы свое иллюзорное существование. Возможно, состояние ложного вакуума оказывается предпочтительным благодаря характерным для него экстремальным условиям. Например, если Вселенная возникла при достаточно высокой начальной температуре, а затем остывала, она могла бы даже “сесть на мель” в ложном вакууме, но пока многие технические вопросы такого типа остаются нерешенными.

Если речь идет о пространстве-времени, то в любом случае бессмысленно говорить о причинности в обычном понимании. Обычно понятие причинности тесно связано с понятием времени, и потому любые соображения о процессах возникновения времени или его “выхода из небытия” должны опираться на более широкое представление о причинности.
Из теории суперструн Майкла Грина из Колледжа королевы Марии при Лондонском университете и Джона Шварца из Калифорнийского технологического института (США) выходит, что наша Вселенная находится в десятимерном пространстве, где три явно “ощущаются” нами, а семь “свернуты” и находятся в глубинах субатомных частиц.

Если пространство действительно десятимерно, то теория считает все десять измерений вполне равноправными на самых ранних стадиях. Привлекает возможность связать явление инфляции со спонтанной компактификацией (сворачиванием) семи из десяти измерений. Согласно такому сценарию, “движущая сила” инфляции представляет собой побочный продукт взаимодействий, проявляющихся через дополнительные измерения пространства. Далее десятимерное пространство могло бы естественно эволюционировать таким образом, что при инфляции три пространственных измерения сильно разрастаются за счет семи остальных, которые, напротив, сжимаются, становясь невидимыми? Таким образом, квантовый микропузырь десятимерного пространства сжимается, а три измерения благодаря этому раздуваются, образуя Вселенную: остальные семь измерений остаются в плену микрокосмоса, откуда проявляются лишь косвенно — в форме взаимодействий. Эта теория на сегодняшний момент кажется очень привлекательной.

Итак, уже сейчас можно дать общий набросок событий, в результате которых Вселенная обрела наблюдаемый сегодня облик. В самом начале Вселенная спонтанно возникла “из ничего”.

Благодаря способности квантовой энергии служить своего рода ферментом, пузыри пустоты пространства могли раздуваться со все возрастающей скоростью, создавая благодаря бутстрэпу колоссальные запасы энергии. Этот ложный вакуум, наполненный саморожденной энергией, оказался неустойчивым и стал распадаться, выделяя энергию в виде теплоты, так что каждый пузырек заполнился огнедышащей материей (файерболом). Раздувание (инфляция) пузырей прекратилось, но начался Большой взрыв.

В это “время” на “часах” Вселенной было 10-32 секунды. Из такого файербола и возникла вся материя и все физические объекты. По мере остывания космический материал испытывал последовательные фазовые переходы. При каждом из переходов из первичного бесформенного материала “вымораживались” все больше различных структур, одно за другим отделялись друг от друга взаимодействия. Шаг за шагом объекты, которые мы называем теперь субатомными частицами, приобретали присущие им ныне черты. По мере того как состав “космического супа” все более усложнялся, оставшиеся со времен инфляции крупномасштабные нерегулярности разрастались в галактики. В процессе дальнейшего образования структур и обособления различных видов вещества Вселенная все больше приобретала знакомые формы. Горячая плазма конденсировалась в атомы, формируя звезды, планеты и, в конечном счете — жизнь. Вот так, примерно, Вселенная “осознала” самое себя.

Впервые космологический принцип был сформулирован немецким философом Николаем Кузанским, который еще в XV веке утверждал, что “вечно движущаяся Вселенная не имеет ни центра, ни окружности, ни верха, ни низа, она однородна, в разных частях ее господствуют одинаковые законы”.

Ему же принадлежит знаменитый афоризм: “Вселенная есть сфера, центр которой всюду, а окружность нигде”, который часто ошибочно приписывают Джордано Бруно или Паскалю, всего лишь повторившим изречение кузанца.

Слово “Вселенная” (Universe) означает единство, общность всех вещей, рассматриваемых как целое. Вещество, энергия, пространство, время, взаимодействия, упорядоченность и структура — все эти понятия, заимствованные из “прейскуранта творца”, служат неотъемлемыми характеристиками Вселенной. Новая физика приоткрывает заманчивую возможность научного объяснения происхождения всех этих вещей, а все фундаментальные свойства физического мира могут появиться автоматически как следствие законов физики, без необходимости предполагать существование крайне специфических начальных условий. Как следствие, новая космология утверждает, что начальное состояние космоса не играет никакой роли, так как вся информация о нем стерлась в ходе инфляции, а наблюдаемая сейчас Вселенная несет на себе лишь отпечаток тех физических процессов, которые происходили с момента начала инфляции.

Надо понимать, что представления об образовании и эволюции Вселенной основаны главным образом на гипотезах и экстраполяциях, которым чрезвычайно сложно дать убедительное подтверждение, и оно лишь результат теоретического моделирования — процедуры во многом спорной и умозрительной.

Другие материалы рубрики


  • Этот взрыв потряс не только часть Вселенной, но и земную астрономию! Громадная звезда вдруг стала сверхновой, и ее разорвало на куски с таким шиком, что даже бывалые астрономы заявили, что никогда такого не видали. А ведь должна была вести себя тихо-тихо. Ученые подозревают, что такое разрушительное событие может в любой момент повториться у нас прямо под боком. Возможно, даже завтра. Или прямо сейчас.



  • Был ли Большой взрыв началом времени или Вселенная существовала и до него? Лет десять назад такой вопрос казался нелепым. В размышлениях о том, что было до Большого взрыва, космологи видели не больше смысла, чем в поисках пути, идущего от Северного полюса на север. Но развитие теоретической физики и, в частности, появление теории струн заставило ученых снова задуматься о предначальной эпохе.
    Вопрос о начале начал занимать философов и богословов с давних времен. Он переплетается с множеством фундаментальных проблем, нашедших свое отражение в знаменитой картине Поля Гогена «D’ou venons-nous? Que sommes-nous? Ou allons-nous?» («Откуда мы пришли? Кто мы такие? Куда мы идем?»). Полотно изображает извечный цикл: рождение, жизнь и смерть — происхождение, идентификация и предназначение каждого индивидуума. Пытаясь разобраться в своем происхождении, мы возводим свою родословную к минувшим поколениям, ранним формам жизни и прото-жизни, химическим элементам, возникшим в молодой Вселенной, и, наконец, к аморфной энергии, некогда заполнявшей пространство. Уходит ли наше фамильное древо корнями в бесконечность или космос так же не вечен, как и мы?

    • Страницы
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6


  • ...В начале 70-х годов появилось предложение объединить бозоны и фермионы в единую теорию, что, мягко говоря, среди ученых вызвало недоумение, ведь столь различны по своим свойствам эти две группы частиц. Тем не менее, оно возможно, если обратиться к симметрии, более широкой, нежели симметрия Лоренца — Пуанкаре, лежащая в основе теории относительности. Математическая суперсимметрия соответствует извлечению квадратного корня из симметрии Лоренца — Пуанкаре, физически же она соответствует превращению фермиона в бозон и наоборот. Разумеется, в реальном мире невозможно проделать такую операцию, тем не менее, операцию суперсимметрии можно сформулировать математически и можно построить теории, включающие суперсимметрии...

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • Галактика, в которой мы живем, — Млечный Путь — настоящий исполин по галактическим меркам. Среди галактик местной группы лишь Туманность Андромеды может тягаться с нашим домом по количеству звезд, размерам и массе. Однако сферы влияния гигантов давно поделены, и нашу галактику окружают десятки, а может, и сотни галактик-спутников.
    Сейчас известны по крайней мере 23 спутника нашей галактики. Некоторые из них светятся, как миллиарды солнц, и жителям Южного полушария нашей планеты отлично знакомы Магеллановы облака — крупнейшие спутники нашей Галактики, не заметить которые на ночном небе невозможно даже невооруженным глазом.



  • В нашей Галактике за пределами Солнечной системы обнаружено несколько сотен планет. Исследовать их проще и дешевле при помощи автоматических зондов сверхмалого размера. Запускать эти аппараты можно с Земли из электромагнитной пушки, а ускорять и корректировать орбиты будут гравитационные поля встречных звезд.
    Полеты к звездам — любимая тема фантастов и авторов компьютерных игр. Лихо носятся их звездолеты на просторах Галактики! Вот только неясно — как и зачем? Но эти вопросы не очень волнуют любознательных читателей: «как» — это придумают инженеры, а уж «зачем» — вообще неприлично спрашивать. Вы только представьте: новые неизведанные миры, братья по разуму... Разве это неинтересно?!
    Но не все фантазии удается воплотить в жизнь. Романтическая эпоха поиска внеземных цивилизаций, рожденная в начале 1960-х успехами космонавтики и радиоастрономии, к концу столетия почти сошла на нет.



  • В кинокомедии «Карнавальная ночь» один из персонажей — лектор — сообщает: «Есть ли жизнь на Марсе, нет ли жизни на Марсе, науке не известно». С тех пор прошло почти полвека, но это утверждение справедливо и сегодня. Однако не менее справедливо и другое: «Где есть вода — там есть и жизнь». Сегодня с большой долей уверенности можно сказать: вода на Марсе есть. Дело за малым — отыскать там жизнь.


  • Существует небольшой шанс, что через 3,34 миллиарда лет Марс столкнется с Землей. Также есть вероятность столкновения Земли и Венеры или Меркурия и Венеры. Меркурий вообще может упасть на Солнце или улететь в межзвездное пространство. Таковы причуды нашей системы, новые тайны которой раскрыли ученые.
    Подробнейшее численное моделирование эволюции орбит в Солнечной системе выполнили профессор Жак Ласкар (Jacques Laskar) и Микаэль Гастино (Mickael Gastineau) из Парижской обсерватории (Observatoire de Paris).
    Долгое время астрономы полагали, что орбиты планет в Солнечной системе стабильны и неизменны. Потом стали появляться сведения, что на заре зарождения системы орбиты ряда планет сильно отличались от нынешних и претерпевали большие изменения, прежде чем все «устоялось».



  • ...Пока ваш звездолет выбирается из гравитационной ловушки Гаргантюа, вы строите планы возвращения домой. К тому моменту, когда вы достигнете Млечного Пути, Земля станет на 2,4 млрд. лет старше, чем во время вашего старта. Изменения в человеческом обществе будут настолько велики, что вы не испытываете особого желания возвращаться на Землю. Вместо этого вы и команда звездолета решаете освоить пространство вокруг какой-нибудь подходящей вращающейся черной дыры. Ведь именно энергия вращения дыры в квазаре 8C 2975 позволяет квазару «проявить себя» во Вселенной, поэтому энергия вращения дыры меньших размеров может стать источником энергии для человеческой цивилизации.

    • Страницы
    • 1
    • 2
    • 3


  • Никто пока не определил, всякая ли звезда в Галактике окружена другими планетами, либо Солнце является исключением из данного правила. За последние 9 лет астрономы при наблюдении за колебательными движениями звезд, которые вызваны воздействием, оказываемым на них планетами, обнаружили сотни таких планет. Но этот метод помогает фиксировать лишь самые массивные планеты, находящиеся неподалеку от звезд. Так можно обнаружить Юпитер, Сатурн в Солнечной системе, но мелкие тела (кометы, астероиды, планеты земного типа), делающие Солнечную систему такой разнообразной, астрономы бы не смогли найти, используя эти методы наблюдения.

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • ...Уходить от Солнца на еще большее расстояние, по подсчетам швейцарского астрофизика, нет смысла. Потому что в стадии красного гиганта Солнце пробудет всего несколько миллионов лет, а затем станет снова быстро сжиматься, превратится в белого карлика и начнет деградировать как источник энергии. И тогда Земле, чтобы получать достаточное количество тепла и света, понадобится орбита меньшая, чем сейчас у Меркурия. Но при таком приближении к светилу силы притяжения довольно скоро остановят вращение Земли вокруг ее оси. Планета будет повернута к Солнцу всегда одной стороной. Значит, жизнь на Земле быстро погибнет: на ночной стороне — от тьмы и холода, а на освещенной — от жары и губительного для всего живого ультрафиолетового и рентгеновского излучения, идущего от белого карлика.

    • Страницы
    • 1
    • 2
    • 3