Теория струн

Втр, 07/01/2014 - 18:37

Во-первых, квантовые струны имеют конечный размер. Обычную (неквантовую) скрипичную струну можно было бы разрезать пополам, затем одну из половинок снова порвать на две части и так далее, пока не получилась бы точечная частица с нулевой массой. Однако принцип неопределенности Гейзенберга не позволяет нам разделить струну на части длиной меньше, чем приблизительно 10–34 м. Мельчайший квант длины обозначается ls и представляет собой природную константу, которая в теории струн стоит в одном ряду со скоростью света c и постоянной Планка h.

Во-вторых, даже безмассовые квантовые струны могут иметь угловой момент. В классической физике тело с нулевой массой не может обладать угловым моментом, поскольку он определяется как произведение скорости, массы и расстояния до оси. Но квантовые флуктуации изменяют ситуацию. Угловой момент крошечной струны может достигать 2h, даже если ее масса равняется нулю, что в точности соответствует свойствам переносчиков всех известных фундаментальных сил, таких как фотон и гравитон. Исторически именно эта особенность углового момента привлекла внимание к теории струн как к кандидату на звание теории квантовой гравитации.

В-третьих, квантовые струны требуют существования дополнительных пространственных измерений. Классическая скрипичная струна будет колебаться независимо от того, каковы свойства пространства и времени. Квантовая струна более привередлива: уравнения, описывающие ее колебания, остаются непротиворечивыми только в том случае, если пространство-время сильно искривлено (что противоречит наблюдениям) или содержит шесть дополнительных измерений.

В-четвертых, физические постоянные, которые определяют свойства природы и входят в уравнения, отражающие закон Кулона и закон всемирного тяготения, перестают быть независимыми, фиксированными константами. В теории струн их значения динамически задаются полями, похожими на электромагнитное. Возможно, напряженность полей была неодинакова на протяжении различных космологических эпох или в отдаленных областях пространства. Теория струн получит серьезное экспериментальное подтверждение, если ученым удастся зарегистрировать хотя бы незначительное изменение физических констант.

Центральное место в теории струн занимает одно из таких полей — дилатон. Оно определяет общую силу всех взаимодействий. Величину дилатона можно истолковать как размер дополнительного пространственного измерения — 11-го по счету.

СВЯЗЫВАНИЕ СВОБОДНЫХ КОНЦОВ

Наконец квантовые струны помогли физикам открыть новый вид природной симметрии — дуализм, который изменяет наше интуитивное представление о том, что происходит, когда объекты становятся чрезвычайно малыми. Я уже ссылался на одну из форм дуализма: обычно длинная струна тяжелее, чем короткая, но если мы попытаемся сделать ее короче фундаментальной длины ls, то она снова начнет тяжелеть.

Поскольку струны могут двигаться более сложными способами, чем точечные частицы, существует и другая форма симметрии — T-дуализм, который выражается в том, что маленькие и большие дополнительные измерения эквивалентны. Рассмотрим замкнутую струну (петлю), расположенную в цилиндрическом пространстве, круговое сечение которого представляет собой одно конечное дополнительное измерение. Струна может не только колебаться, но и вращаться вокруг цилиндра или наматываться на него.

Энергетическая стоимость обоих состояний струны зависит от размеров дополнительного измерения. Энергия наматывания прямо пропорциональна его радиусу: чем больше цилиндр, тем сильнее растягивается струна и тем больше энергии она запасает. С другой стороны, энергия, связанная с вращением, обратно пропорциональна радиусу: цилиндрам большего радиуса соответствуют более длинные волны, а значит, более низкие частоты и меньшие значения энергии. Если большой цилиндр заменить малым, два состояния движения могут поменяться ролями: энергия, связанная с вращением, может быть обеспечена наматыванием и наоборот. Внешний наблюдатель замечает только величину энергии, а не ее происхождение, поэтому для него большой и малый радиусы физически эквивалентны.

Хотя T-дуализм обычно описывается на примере цилиндрических пространств, в которых одно из измерений (окружность) конечно, один из его вариантов применяется к обычным трем измерениям, которые, похоже, простираются безгранично. О расширении бесконечного пространства нужно говорить с осторожностью. Его полный размер не может измениться и остается бесконечным. Но все же оно способно расширяться в том смысле, что расположенные в нем тела (например, галактики) могут удаляться друг от друга. В данном случае значение имеет не размер пространства в целом, а его масштабный коэффициент, в соответствии с которым происходит изменение расстояний между галактиками и их скоплениями, заметное по красному смещению. Согласно принципу T-дуализма, вселенные и с малыми, и с большими масштабными коэффициентами эквивалентны. В уравнениях Эйнштейна такой симметрии нет; она является следствием унификации, заключенной в теории струн, причем центральную роль здесь играет дилатон.

Когда-то бытовало мнение, что T-дуализм присущ только замкнутым струнам, поскольку открытые струны не могут наматываться, так как их концы свободны. В 1995 г. Йозеф Полчински (Joseph Polchinski) из Калифорнийского университета в Санта-Барбаре показал, что принцип T-дуализма применим к открытым струнам в том случае, когда переход от больших радиусов к малым сопровождается изменением условий на концах струны. До этого физики считали, что на концы струн не действуют никакие силы и они абсолютно свободны. Вместе с тем T-дуализм обеспечивается так называемыми граничными условиями Дирихле, при которых концы струн оказываются зафиксированными.

Другие материалы рубрики


  • За последнее время вблизи Земли пролетели несколько сравнительно крупных небесных тел. Сильную тревогу вызвало в 1936 г. прохождение астероида Адонис на расстоянии около 2 млн. км от Земли. А настоящую панику вызвал в 1937 г. астероид Гермес, имеющий диаметр ≈1,5 км, промчавшийся лишь на расстоянии 800 тыс. км от Земли (удвоенное расстояние до Луны). Позже (в 1992 г.) большой ажиотаж был связан с приближением к Земле малой планеты Тоутатис. Астероид диаметром около полукилометра пролетел мимо Земли 19 мая 1996 г. на расстоянии всего 450 тыс. км.

    • Страницы
    • 1
    • 2
    • 3


  • ...И тут внимание исследователей привлекла давняя и очень любопытная гипотеза космических струн. Постичь ее трудно, представить наглядно просто невозможно: струны можно только описать сложными математическими формулами. Эти загадочные одномерные образования не излучают света и обладают огромной плотностью — один метр такой "ниточки" весит больше Солнца. А если их масса так велика, то и гравитационное поле, пусть даже растянутое в линию, должно значительно отклонять световые лучи. Однако линзы уже сфотографированы, а космические струны и "черные дыры" пока существуют лишь в уравнениях математиков. Из этих уравнений следует, что возникшая сразу после Большого взрыва космическая струна должна быть "замкнута" на границы Вселенной. Но границы эти так далеки, что середина струны их "не чувствует" и ведет себя, как кусок упругой проволоки в свободном полете или как леска в бурном потоке. Струны изгибаются, перехлестываются и рвутся. Оборванные концы струн тут же соединяются, образуя замкнутые куски. И сами струны, и отдельные их фрагменты летят сквозь Вселенную со скоростью, близкой к скорости света.

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • ...Несмотря на то, что идея коллапса кажется простой (при сжатии ядра выделяется энергия гравитационной связи, за счет которой выбрасываются внешние слои вещества), трудно понять процесс в деталях. В конце жизни у звезды с массой более 10 масс Солнца образуется слоеная структура, с глубиной появляются слои все более тяжелых элементов.
    Ядро состоит в основном из железа, а равновесие звезды поддерживается квантовым отталкиванием электронов.
    Но в конце концов масса звезды подавляет электроны, которые вжимаются в атомные ядра, где начинают реагировать с протонами и образовывать нейтроны и электронные нейтрино. В свою очередь, нейтроны и оставшиеся протоны прижимаются друг к другу все сильнее, пока их собственная сила отталкивания не начнет действовать и не остановит коллапс.

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • ...Уходить от Солнца на еще большее расстояние, по подсчетам швейцарского астрофизика, нет смысла. Потому что в стадии красного гиганта Солнце пробудет всего несколько миллионов лет, а затем станет снова быстро сжиматься, превратится в белого карлика и начнет деградировать как источник энергии. И тогда Земле, чтобы получать достаточное количество тепла и света, понадобится орбита меньшая, чем сейчас у Меркурия. Но при таком приближении к светилу силы притяжения довольно скоро остановят вращение Земли вокруг ее оси. Планета будет повернута к Солнцу всегда одной стороной. Значит, жизнь на Земле быстро погибнет: на ночной стороне — от тьмы и холода, а на освещенной — от жары и губительного для всего живого ультрафиолетового и рентгеновского излучения, идущего от белого карлика.

    • Страницы
    • 1
    • 2
    • 3


  • ...Новая теория позволила сформулировать идеи, допускавшие экспериментальную проверку. В результате этих работ была предсказана новая разновидность света, состоящая не из обычных фотонов, а из загадочных Z–частиц. В окрестностях Женевы в 1983 году в серии экспериментов, исследующих столкновения частиц высоких энергий на ускорителе, были обнаружены Z–частицы, то есть единая теория поля получила подтверждение. Теоретики к этому времени сформулировали амбициозную теорию, объединяющую с электромагнитным и слабыми взаимодействиями еще один тип ядерных сил — сильное взаимодействие. Кроме того, были получены первые результаты исследований в области гравитации, показывавшие, каким образом гравитационное взаимодействие можно было бы объединить с другими типами взаимодействий...

    • Страницы
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6


  • Космические фонтаны из водяного льда, пара и смеси других веществ, поднимающиеся над равнинами луны Сатурна, давно интригуют специалистов. Не хотят сходиться уравнения, описывающие энергетику этого мира, столь удаленного от Солнца. Однако все встает на свои места, если учесть новое открытие: волнующая активность Энцелада по геологическим меркам — мимолетный эпизод.

    • Страницы
    • 1
    • 2


  • Космологи в замешательстве. Обычно предметы, брошенные вверх, замедляются. Планеты притягивают объекты, звезды притягивают планеты. Это нормально. Но почему тогда Вселенная расширяется? Отдельные галактики, разбросанные после Большого взрыва в разные стороны, должны притягиваться друг ко другу — и расширение должно замедляться. Но того не происходит: они разлетаются друг от друга с ускорением. Принято считать, что виновата во всем темная энергия, хотя она темная именно оттого, что о ней никто ничего не знает. Но уже ясно точно, что на предельно больших расстояниях гравитация превратилась в отталкивающую силу, а не в притягивающую.

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • ...Тесное сходство протона и нейтрона наводит на мысль, что здесь существует симметрия. И действительно, на ядерный процесс никак не отразится, если можно было бы заменить все протоны на нейтроны, или наоборот. Это свойство получило название — симметрия изотопического спина, или изотопическая симметрия. Название связано с тем, что ядра, отличающиеся только числом нейтронов, называются изотопами. Нынешнему состоянию Вселенной соответствует равное количество протонов и нейтронов, которые находятся в постоянном движении. Но какая причина вызывает эти движения и вообще изменения в природе?..

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • Этот взрыв потряс не только часть Вселенной, но и земную астрономию! Громадная звезда вдруг стала сверхновой, и ее разорвало на куски с таким шиком, что даже бывалые астрономы заявили, что никогда такого не видали. А ведь должна была вести себя тихо-тихо. Ученые подозревают, что такое разрушительное событие может в любой момент повториться у нас прямо под боком. Возможно, даже завтра. Или прямо сейчас.



  • Уже очень скоро сверхмассивную черную дыру в центре нашей Галактики украсит красочный венец из молодых и ярких звезд. Следы метилового спирта в огромном газовом кольце вокруг нее означают, что в нем уже формируются массивные звезды. Раньше астрономы думали, что черная дыра образованию звезд может помешать.
    В центрах большинства галактик, особенно крупных, находятся сверхмассивные черные дыры, весящие миллионы и даже миллиарды солнечных масс — куда больше тех, что возникают в конце эволюции звезд. Судя по всему, эти объекты зародились еще в первые сотни миллионов лет после Большого взрыва, породившего нашу Вселенную, и с тех пор лишь росли, постепенно нагуливая массу и освещая свои вселенские окрестности ярким светом активности галактического ядра

    • Страницы
    • 1
    • 2