Угроза комет и астероидов

Сб, 04/05/2014 - 18:57

Реальной оценкой энергии Тунгусского феномена является величина ≈6 Мт (E=2,5*1023 эрг), мощность взрыва бразильского метеорита составила 1 Мт (взрыв водородной бомбы с тротиловым эквивалентом в 1 Мт), а энергия Сихотэ-Алинского метеорита оценивается в ≈20 кт (8*1020 эрг). Энергия соударения с Землей Аризонского метеорита эквивалента ≈250 Мт.
Учитывая эмпирическую зависимость, связывающую энергию землетрясения (E) с магнитудой (M) землетрясения по шкале Рихтера
lg E = 11,8 + 1,5 M,
находим, что энергия Тунгусского феномена эквивалентна землетрясению с магнитудой M=7,7, а для Аризонского метеорита M=8,8.

Энергия сильнейшего землетрясения (M=12) составляет примерно 6,3*1029 эрг (15*106 Мт), поэтому энергия соударения порядка 1030 эрг (что соответствует астероиду диаметром d ≈8 км) должна приводить к катастрофе глобального масштаба с нарушением земной коры. При этом размер кратера, образующегося на поверхности Земли, составит величину около D=100 км (в этом случае глубина кратера лишь примерно в 2 раза будет меньше средней толщины h=35 км земной коры).

При падении космического тела (астероида) диаметром около 10 км в океан глубиной 4-5 км возникнет «водяной» вал высотой порядка глубины океана на расстоянии около 25 км от места удара (при скорости падения тела в 20-30 км/с). При диаметре космического тела в 2 км высота вала на тех же расстояниях составит уже примерно 1 км. В случае падения метеорита диаметром всего ≈200 м в область океана со средней глубиной ≈0,6 км (средняя глубина Балтийского моря) должна образоваться волна с начальной амплитудой около 500 м.

При распространении волны от места удара (места падения тела) амплитуда волны затухает примерно обратно пропорционально ее радиусу, но оставаясь достаточно значительной на больших расстояниях. Так, для тела диаметром 2 км высота волны составляет примерно 10 м на расстоянии до 2 тыс. км от места падения. Цунами возникают при падении в океаны и моря даже не очень крупных космических тел.4

Если космическое тело не является астероидом (метеоритом), а является кометным ядром, то последствия столкновения с Землей могут быть еще более катастрофическими для биосферы из-за интенсивного рассеивания кометного вещества.

За всю историю человеческой цивилизации уже наблюдалось около 2 тысяч кометных появлений. Но почти для половины из них нет сведений о точных положениях этих комет (хотя бы для трех различых моментов времени). Поэтому ничего определенного об их орбитах сказать нельзя.
Наиболее точный и полный каталог кометных орбит — каталог Марсдена — за промежуток времени, равный 2065 годам, содержит сведения о 1029 кометных появлениях. Среди них только 659 различных комет: 114 являются короткопериодическими, 162 — долгопериодическими, 285 — с параболическими и 98 — с гиперболическими орбитами. Эксцентриситеты гиперболических орбит комет незначительно превышают единицу (например, наибольшим эксцентриситетом e=1,0063 обладала комета Сандиджа — 1972IV).

Это свидетельствует о том, что эти орбиты образовались из эллиптических (с эксцентриситетами, близкими к единице) под действием гравитационных возмущений от планет, поскольку из межвездного пространства должны были бы попадаться кометы с большими скоростями и движущиеся по резко выраженным гиперболическим орбитам. Следовательно, кометы являются членами Солнечной системы, а не пришельцами из межзвездных просторов.

Ежегодно открываются около десятка комет, а сотни и тысячи, вероятно, остаются необнаруженными. Довольно часто — один раз в два-три года — вблизи Земли и Солнца проходит яркая комета с большим хвостом, а общее число комет, подходящих к Солнцу на перигелийные расстояния q < 1 а.е. (т.е. пересекающих орбиту Земли), не более пяти в год. Вероятность столкновения кометы с Землей за время жизни одного поколения (примерно 70 лет) оценивается как 6 шансов из 10 миллионов. Однако, несмотря на ничтожную малость этой величины, земляне в 1908 г., по-видимому, «вытащили выигрышный билет», когда в Сибири в бассейне реки Подкаменной Тунгуски упало небесное тело, именуемое теперь «Тунгусским феноменом». В настоящее время существуют весомые основания считать, что это небесное тело было осколком ядра кометы Энке.

Деление ядра кометы на несколько частей (фрагментов) наблюдалось многократно. Так, периодическая комета Биелы (1846II) разделилась на две части на глазах у наблюдателей в середине января 1846 г. При этом каждый из компонентов попеременно оказывался ярче другого. В марте 1976 г. яркая комета Уэста (1976VI) после тесного сближения с Солнцем распалась на четыре вторичных ядра. Причиной разрушения кометы Уэста мог стать существенный прогрев ее ледяного ядра вблизи перигелия орбиты. Это способствовало образованию многочисленных микротрещин в ядре и взрывному выходу газов из полостей в ядре. Аналогичное явление наблюдается с айсбергами в океанах, которые иногда с оглушительным взрывом рассыпаются на мелкие куски.

А комета Шумейкеров-Леви 9 в 1992 г. «имела неосторожность» сблизиться с Юпитером. В результате могучие гравитационные объятия Юпитера разнесли ядро кометы на множество осколков. Летом 1994 г. они врезались в «поверхность» Юпитера, образовав гигантские вихревые структуры, сравнимые по размерам с Землей.

«Не удержалась» и комета Галлея. После очередного прохождения перигелия в 1986 г. она, удаляясь от Солнца и находясь между орбитами Сатурна и Урана, неожиданно «вспыхнула». 12 февраля 1991 г. было обнаружено увеличение ее яркости в триста раз! Ядро кометы, состоящее из «смеси» снега, льда, замерзших газов и космической пыли и имеющее размеры 14*7,5*7,5 км, по-видимому, столкнувшись с небольшим метеоритом, выбросило пылевое облако, растянувшееся на 300 тыс. км и светящееся отраженным солнечным светом. После этого комета раскололась на несколько частей (фрагментов).
В настоящее время установлена непосредственная связь между метеорными потоками и кометами (например, Галлея, Энке, Биелы), двигавшимися ранее по тем же орбитам. Метеорные тела — рой частиц, окружавших ядро кометы, — распределены по всей орбите кометы. Поскольку распад кометы есть процесс постепенный, то метеорные потоки могут существовать достаточно длительное время. Когда Земля пересекает орбиту кометы, она сталкивается с этим роем частиц, и наблюдается великолепное зрелище в виде огромного числа метеоров (иногда наблюдается до 1000 метеоров в минуту), разбегающихся как будто из одной точки неба — радианта. Это так называемый «метеорный дождь». Возмущение орбит метеоров планетами постепенно рассеивает метеорные потоки, и в итоге возникают так называемые спорадические (случайно появляющиеся) метеоры, не относящиеся к какому-то определенному потоку.

Распределения долгопериодических комет по большим полуосям их невозмущенных орбит (т.н. первичных орбит до момента вхождения кометы в зону действия планет) группируются в области больших полуосей 2*104≤a≤105 а.е. Опираясь на этот факт, Я.Оорт в 1950 г. сделал вывод о том, что Солнечная система должна быть окружена гигантским облаком комет (т.н. «облако Оорта»), располагающимся на расстоянии до 105 а.е. от Солнца. Оно и является источником, из которого под действием тяготения близко проходящих звезд время от времени вырываются кометы. Те из них, которые попадают во внутреннюю область Солнечной системы, и наблюдаются как новые кометы.5

Однако облако Оорта, скорее всего, представляет собой лишь слабый ореол («гало»), который окружает намного более вместительное хранилище комет с числом в сотни или тысячи раз большим (≈1013-1014)! Это хранилище (банк Хиллса) располагается гораздо ближе к Солнцу, на расстоянии не более а=20000 а.е. Внутренний банк Хиллса явно не проявляется, поскольку, в отличие от гало, кометы непосредственно из него не вырываются и, следовательно, не приходят во внутренние области Солнечной системы.6 Внутренний банк комет, уже более «жестко связанный» с Солнцем (более устойчивый к внешним возмущениям, обусловленным, например, прохождением вблизи него ближайших к Солнцу звезд), может быть источником, поставляющим кометные ядра в гало, откуда они и направляются в глубины Солнечной системы.

Возмущения внутреннего (более плотного, чем облако Оорта) кометного банка способны привести к резкому усилению потока в направлении к Солнцу, а следовательно, к довольно частым столкновениям комет с Землей. «Бомбардировка» Земли кометами должна происходить не непрерывно, а относительно короткими порциями. За время существования Солнечной системы (≈4,4 млрд. лет) могло произойти около десяти кометных бомбардировок, вызванных прохождениями звезд через внутренний кометный банк Хиллса. Длительность каждой такой бомбардировки в среднем в 1000 раз короче, чем промежуток времени между ними. С этими «кометными ливнями» (по некоторым оценкам, во время такого ливня за 500 тыс. лет на Землю может выпадать до 200 комет!) может быть связано вымирание некоторых биологических видов и массовое возникновение кратеров на Земле (значительное уменьшение прозрачности земной атмосферы за счет «кометной бомбардировки» может приводить к вымиранию сначала простейших, а затем более сложных видов, в частности, динозавров).7

Некоторые современные исследования свидетельствуют о том, что вымирание отдельных биологических видов, а также массовое появление кратеров на Земле в среднем происходило с одной и той же периодичностью примерно в 26 млн. лет. Причиной подобных событий могли быть интенсивные бомбардировки поверхности Земли кометными ливнями, а периодичность связана с повторяющимися с интервалом около 30 млн. лет прохождениями Солнца через галактическую плоскость. Массивные облака пыли и газа, сосредоточенные в плоскости Галактики, должны приводить к сильным возмущениям кометного банка, вызывая появление кометных ливней.

Возможно, однако, и иное объяснение, если предположить, что наше Солнце является не одиночной звездой, а компонентом двойной системы, тем более что кратные системы достаточно распространены в звездном мире. Спутница Солнца (уже названная в честь древнегреческой богини возмездия Немезидой) могла бы представлять собой небольшую «невидимую звезду» (т.н. черный карлик — практически несамосветящийся объект типа планеты), массой в несколько сотых долей (или еще меньше) массы Солнца. Обращаясь относительно Солнца (центра масс системы) по сильно вытянутой эллиптической орбите с периодом в 26 млн. лет, в перигелии своей орбиты эта звезда, приближаясь достаточно близко к Солнцу (на расстояние порядка тысячи астрономических единиц), вызывала бы обильные кометные ливни.

Периоду обращения этой звезды по эллиптической орбите T=26 млн. лет соответствует, согласно 3-му закону Кеплера, большая полуось орбиты, равная a=8,8*104 а.е. Учитывая, что последняя «кометная активность» (вызвавшая очередное исчезновение некоторых биологических видов) произошла около 11 млн. лет назад (что составляет почти половину периода T), спутница Солнца должна сейчас находиться вблизи наиболее удаленной от Солнца точки орбиты (афелия), что и не позволяет обнаружить ее в настоящее время.

Таким образом, кометно-астероидная опасность представляет собой реальную угрозу для значительного числа биологических видов организмов, находящихся на Земле. Падение на Землю небесных тел (астероидов или комет) с диаметрами d≥5 км способно вызвать катастрофу глобального масштаба (характерное время выпадения на Землю подобных объектов T=20-30 млн. лет), а при 0,5

В настоящее время ввиду отсутствия достаточной информации о распространенности различных объектов в Солнечной системе (особенно небесных тел размерами десятки и сотни метров, которые могут представлять опасность при их падении на Землю), а также неэффективности ныне возможных (обсуждаемых) методов отклонения объектов, падение которых на Землю способно вызвать глобальную катастрофу (ударное воздействие, доставка на поверхность объекта ракетных двигателей большой и малой тяги, использование солнечных парусов и т.п.), для разрешения проблемы предотвращения столкновений небесных тел с Землей необходимо проведение дальнейших исследований.

Сноски:

1) Хотя кометы подобно астероидам движутся вокруг Солнца, они существенно отличаются от них по химическому составу; кометы интенсивно рассеивают солнечный свет и поэтому, несмотря на малые размеры их ядер, они часто видны невооруженным глазом.
2) Обнаруженные на расстоянии от 32 до 35 а.е. от Солнца объекты астероидного типа, по-видимому, движутся в окрестности устойчивых треугольных точек либрации Нептуна и являются «троянскими астероидами» семейства Нептуна.
3) В настоящее время считается, что Хирон (a=13,7 a.e., e=0,38, i=6,9o) был «захвачен» из занептунного пояса.
4) При определении степени кометно-астероидной опасности необходимы оценки последствий по различным факторам — световое излучение, ударные волны, загрязнение атмосферы пылью и аэрозолями и т.п. Выброс соленой воды морей и океанов (в результате падения космического тела) на высоты порядка 20-30 км может приводить к сложным физико-химическим процессам (возможно, к разрушению озонового слоя и другим необратимым последствиям) в атмосфере Земли.
5) Под влиянием возмущений от близко проходящих звезд кометы облака Оорта могут направляться как в межзвездное пространство за пределы Солнечной системы, так и по направлению к Солнцу — во внутренние области Солнечной системы, образуя долгопериодические кометы. При этом ориентация орбит комет не должна иметь какого-либо привилегированного положения относительно плоскости эклиптики, что на самом деле и наблюдается.
6) Если число кометных ядер в банке Хиллса достаточно велико
(ок. 1014), то на пределе чувствительности современной аппаратуры в принципе можно наблюдать тепловое излучение заключенных в нем кометных ядер.
7) Однако не исключено, что кометные ливни, «высыпающие» на Землю большое количество вещества (в частности, органические молекулы), способны были дать начало органической жизни на Земле.

Другие материалы рубрики


  • Уже очень скоро сверхмассивную черную дыру в центре нашей Галактики украсит красочный венец из молодых и ярких звезд. Следы метилового спирта в огромном газовом кольце вокруг нее означают, что в нем уже формируются массивные звезды. Раньше астрономы думали, что черная дыра образованию звезд может помешать.
    В центрах большинства галактик, особенно крупных, находятся сверхмассивные черные дыры, весящие миллионы и даже миллиарды солнечных масс — куда больше тех, что возникают в конце эволюции звезд. Судя по всему, эти объекты зародились еще в первые сотни миллионов лет после Большого взрыва, породившего нашу Вселенную, и с тех пор лишь росли, постепенно нагуливая массу и освещая свои вселенские окрестности ярким светом активности галактического ядра

    • Страницы
    • 1
    • 2


  • В своей ранней молодости Марс, похоже, подвергся удару, навсегда изменившему облик планеты. Объект размером с Плутон врезался в планету с севера, разделив ее на две половины — низкий север и высокий юг. Крупнейший кратер Солнечной системы сохранился до наших дней.



  • Впервые астрономы обнаружили планету вне нашей Солнечной системы, которая является потенциально пригодной для жизни, с температурами подобными земным, сопоставимыми с Землей массой и размером и, вероятно, жидкой водой на поверхности. Что приятно, потенциально обитаемый мир находится всего в двух десятках световых лет от нас. Когда-нибудь люди туда смогут добраться.
    О сенсационной находке рассказала 25 апреля 2007 года международная группа из 11 астрономов (из Швейцарии, Португалии и Франции), которая работала в Чили, на одном из телескопов Европейской южной обсерватории (ESO). Ученые нашли сходную с Землей планету у звезды Gliese 581 — красного карлика, расположенного в созвездии Весы.
    Планета, получившая имя Gliese 581c, обладает массой примерно в 5 масс Земли. Ее диаметр оценивается в 1,5 диаметра нашей планеты, так что сила тяжести на ее поверхности составляет приблизительно 1,6 g. Из-за этих параметров астрономы окрестили ее также «Суперземлей» (super-Earth).
    Ученые предполагают, что эта планета — скалистый мир, сходный с Землей по облику. Как возможный вариант — это может быть ледяная планета. Но в обоих случаях на ее поверхности должна быть жидкая вода. Причем, в случае с ледяным миром — она может быть покрыта океаном полностью.



  • Космологи в замешательстве. Обычно предметы, брошенные вверх, замедляются. Планеты притягивают объекты, звезды притягивают планеты. Это нормально. Но почему тогда Вселенная расширяется? Отдельные галактики, разбросанные после Большого взрыва в разные стороны, должны притягиваться друг ко другу — и расширение должно замедляться. Но того не происходит: они разлетаются друг от друга с ускорением. Принято считать, что виновата во всем темная энергия, хотя она темная именно оттого, что о ней никто ничего не знает. Но уже ясно точно, что на предельно больших расстояниях гравитация превратилась в отталкивающую силу, а не в притягивающую.

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • Итак, знакомимся с действующими лицами драмы. Коричневый карлик 2M1207 спектрального класса M8 (его можно увидеть хорошо вооруженным глазом в созвездии Центавр) и его небольшой компаньон — планета 2M1207b. Последняя уже несколько лет как мучает ученых своими загадками. И вот теперь новейшее исследование позволило предположить: странные особенности данного объекта объясняются тем, что он рожден в результате совсем недавнего столкновения двух планет.



  • Немного найдется произведений, передающих красоту космических объектов, называемых планетарными туманностями. Освещенные изнутри родительской звездой, расцвеченные флуоресцирующими атомами и ионами на фоне космической черноты, газовые структуры кажутся живыми. Ученые дали им прозвища — Муравей, Морская Звезда, Кошачий Глаз...
    Термин «планетарные туманности» — представляющие собой размытые, похожие на облака объекты, видимые только в телескоп — придумал два столетия назад английский астроном Вильям Гершель (William Herschel), исследователь туманностей. Многие из них имеют округлую форму, которая напомнила ученому зеленоватый диск планеты Уран, им же и открытой. К тому же он полагал, что округлые туманности могут быть планетными системами, формирующимися вокруг молодых звезд. Термин прижился, несмотря на то, что действительность оказалась иной: туманности такого типа состоят из газа, сброшенного умирающими звездами. Примерно через 5 млрд. лет Солнце закончит свой космический век изящным выбросом планетарной туманности, что не вполне соответствует теории эволюции звезд — основе, на которой базируется наше понимание космоса. Если звезды рождаются, живут и умирают круглыми, то как же они создают вокруг себя структуры, которые мы видим на фотографиях «Хаббла», подобные Муравью, Морской Звезде или Кошачьему Глазу?

    • Страницы
    • 1
    • 2


  • Наблюдения на рентгеновской обсерватории «Чандра» показали наличие большого числа маломассивных рентгеновских двойных звезд в эллиптических и линзовидных галактиках, а также в балджах — центральных сферических компонентах — дисковых галактик. Распределение источников по светимостям хорошо описывается двумя компонентами, граница между которыми соответствует светимости порядка (2-3) 1038 эрг/с. Т.к. эта величина примерно соответствует максимальной (т.н. Эддингтоновской) светимости объекта с массой 1.4 Мо, то возможно, что более мощные источники являются аккрецирующими черными дырами, а менее мощные — нейтронными звездами. Т.о. с некоторой долей уверенности можно говорить, что мы видим в галактиках ранних типов — эллиптических и линзовидных — тесные двойные системы как с черными дырами (самые яркие источники), так и с нейтронными звездами (менее яркие).



  • Прошло без малого сто лет с того момента, как были открыты космические лучи-потоки заряженных частиц, приходящих из глубин Вселенной. С тех пор сделано много открытий, связанных с космическими излучениями, но и загадок остается еще немало. Одна из них, возможно, наиболее интригующая: откуда берутся частицы с энергией более
    1020 эВ, то есть почти миллиард триллионов электрон-вольт, в миллион раз большей, чем будет получена в мощнейшем ускорителе — Большом адронном коллайдере (LHC)? Какие силы и поля разгоняют частицы до таких чудовищных
    энергий?

    • Страницы
    • 1
    • 2


  • ...Пока ваш звездолет выбирается из гравитационной ловушки Гаргантюа, вы строите планы возвращения домой. К тому моменту, когда вы достигнете Млечного Пути, Земля станет на 2,4 млрд. лет старше, чем во время вашего старта. Изменения в человеческом обществе будут настолько велики, что вы не испытываете особого желания возвращаться на Землю. Вместо этого вы и команда звездолета решаете освоить пространство вокруг какой-нибудь подходящей вращающейся черной дыры. Ведь именно энергия вращения дыры в квазаре 8C 2975 позволяет квазару «проявить себя» во Вселенной, поэтому энергия вращения дыры меньших размеров может стать источником энергии для человеческой цивилизации.

    • Страницы
    • 1
    • 2
    • 3


  • О спонтанном возникновении вещества из пустого пространства говорят как о рождении “из ничего”, которое близко по духу рождению ex nihilo в христианской доктрине. Для физики пустое пространство совсем не “ничего”, а весьма существенная часть Вселенной, а мысль о рождении самого пространства может показаться вообще странной. Однако в каком-то смысле это все время происходит вокруг нас. Расширение Вселенной есть не что иное, как непрерывное “разбухание” пространства. С каждым днем доступная современным телескопам область Вселенной возрастает на 1018 кубических световых лет. Здесь полезна аналогия с резиной. Если упругий резиновый жгут вытянуть, его “становится больше”. Пространство напоминает суперэластик тем, что оно, насколько известно физикам, может неограниченно долго растягиваться не разрываясь. Растяжение и искривление пространства напоминает деформацию упругого тела тем, что “движение” пространства происходит по законам механики точно так же, как и движение обычного вещества. В данном случае это законы гравитации. Квантовая теория в равной мере применима как к веществу, так и к пространству и к времени.
    Действительно, благодаря собственной физической природе Вселенная возбуждает в себе всю энергию, необходимую для “создания” материи — это есть космический бутстрэп (bootstrap — в переводе “зашнуровка”, в переносном смысле — отсутствие иерархии в системе элементарных частиц).