Загадки космических струн

Пт, 06/05/2009 - 12:39

Проверить эту теорию в лаборатории удастся, когда энергия ускорителей достигнет 1016 ГэВ на одну частицу. Произойдет это не скоро: сегодня она пока не превышает 104 ГэВ, и строительство даже таких "маломощных" ускорителей — мероприятие чрезвычайно дорогостоящее даже для всего мирового научного сообщества. Однако энергии порядка 1016 ГэВ и даже гораздо выше были в ранней Вселенной, которую физики часто называют «ускорителем бедного человека»: изучение физических взаимодействий в ней позволяет проникнуть в недоступные нам области энергий.

Утверждение может показаться странным: как можно исследовать то, что происходило десятки миллиардов лет назад? И тем не менее такие "машины времени" существуют — это современные мощные телескопы, позволяющие изучать объекты на самой границе видимой части Вселенной. Свет от них идет к нам 15-20 миллиардов лет, мы сегодня видим их такими, какими они были именно в ранней Вселенной.

Теория объединения электромагнитных, слабых и сильных взаимодействий предсказала, что в природе есть большое количество частиц, никогда не наблюдавшихся экспериментально. Это не удивительно, если учесть, какие невообразимые энергии нужны для их рождения во взаимодействиях привычных нам частиц. Другими словами, для наблюдений за их проявлениями опять необходимо обращать свой взор на раннюю Вселенную.

Некоторые такие частицы нельзя даже назвать частицами в привычном нам смысле слова. Это одномерные объекты с поперечным размером около 10-37 см (значительно меньше атомного ядра — 10-13 см) и длиной порядка диаметра нашей Вселенной — 40 миллиардов световых лет (1028 см). Академик Я. Б. Зельдович, предсказавший существование таких объектов, дал им красивое название — космические струны, поскольку они действительно должны напоминать струны гитары.

Создать их в лаборатории невозможно: у всего человечества не хватит энергии. Другое дело — ранняя Вселенная, где условия для рождения космических струн возникли естественным путем.
Итак, струны во Вселенной могут быть. И отыскать их придется астрономам.

Башня аризонской обсерватории Кит-Пик растворилась в черноте мартовской ночи. Ее огромный купол медленно поворачивался — глаз телескопа искал две звездочки в созвездии Льва. Астроном из Принстона Э. Тернер предполагал, что это квазары, таинственные источники, излучающие в десятки раз больше энергии, чем самые мощные галактики. Они так бесконечно далеки, что едва видны в телескоп. Наблюдения закончились. Тернер ждал, когда ЭВМ расшифрует оптические спектры, даже не предполагая, что через несколько часов сделает сенсационное открытие...
Впрочем, рассказ об этой истории лучше начать с другой мартовской ночи, вернувшись на много лет назад.

В 1979 году астрофизики, изучая радиоисточник в созвездии Большой Медведицы, отождествили его с двумя слабыми звездочками. Расшифровав их оптические спектры, ученые поняли, что открыли еще одну пару неизвестных квазаров.
Вроде бы ничего особенного — искали один квазар, а нашли сразу два. Но астрономов насторожил необъяснимый факт: спектры у источников полностью совпали. Вот это-то и оказалось главным сюрпризом.

Дело в том, что спектр каждого квазара уникален и неповторим. Порой их даже сравнивают с дактилоскопическими картами — как нет одинаковых отпечатков пальцев у разных людей, так не могут и совпадать спектры двух квазаров. И если уж продолжить сравнение, то совпадение оптических спектров у новой пары звезд было просто фантастическим — словно сошлись не только отпечатки пальцев, но даже и мельчайшие царапинки на них.

Одни астрофизики сочли "близнецов" парой разных, не связанных квазаров. Другие выдвинули смелое предположение: квазар один, а его двойное изображение — просто "космический мираж". О земных миражах, возникающих в пустынях и на морях, наслышан каждый, а вот наблюдать подобное в космосе еще никому не удавалось. Однако это редкое явление должно возникать.
Космические объекты с большой массой создают вокруг себя сильное гравитационное поле, которое изгибает идущие от звезды лучи света. Если поле неоднородно, лучи изогнутся под разными углами, и вместо одного изображения наблюдатель увидит несколько. Понятно, что чем сильнее искривлен луч, тем больше и масса гравитационной линзы. Гипотеза нуждалась в проверке. Долго ждать не пришлось, линзу нашли осенью того же года. Эллиптическую галактику, вызывающую двойное изображение квазара, сфотографировали почти одновременно в двух обсерваториях. А вскоре астрофизики обнаружили еще четыре гравитационные линзы. Позднее удалось обнаружить даже эффект "микролинзирования" — отклонение световых лучей очень маленькими (по космическим меркам) темными объектами масштаба нашей Земли или планеты Юпитер .

И вот Э. Тернер, получив похожие друг на друга, как две капли воды, спектры, открывает шестую линзу. Казалось бы, событие заурядное, какая уж тут сенсация. Но на этот раз двойные лучи света образовали угол в 157 секунд дуги — в десятки раз больший, чем раньше. Такое отклонение могла создать лишь гравитационная линза с массой в тысячу раз большей, чем любая доселе известная во Вселенной. Вот почему астрофизики поначалу и предположили, что обнаружен космический объект невиданных размеров — что-то вроде сверхскопления галактик.

Эту работу по важности, пожалуй, можно сравнить с такими фундаментальными результатами, как обнаружение пульсаров, квазаров, установление сетчатой структуры Вселенной. "Линза" Тернера, безусловно, одно из выдающихся открытий второй половины XX века.

Разумеется, интересна не сама находка — еще в 40-х годах А. Эйнштейн и советский астроном Г. Тихов почти одновременно предсказали существование гравитационной фокусировки лучей. Непостижимо другое — размер линзы. Оказывается, в космосе бесследно скрываются огромные массы, в тысячу раз превосходящие все известные, и на их поиск ушло сорок лет.

Другие материалы рубрики


  • Галактика, в которой мы живем, — Млечный Путь — настоящий исполин по галактическим меркам. Среди галактик местной группы лишь Туманность Андромеды может тягаться с нашим домом по количеству звезд, размерам и массе. Однако сферы влияния гигантов давно поделены, и нашу галактику окружают десятки, а может, и сотни галактик-спутников.
    Сейчас известны по крайней мере 23 спутника нашей галактики. Некоторые из них светятся, как миллиарды солнц, и жителям Южного полушария нашей планеты отлично знакомы Магеллановы облака — крупнейшие спутники нашей Галактики, не заметить которые на ночном небе невозможно даже невооруженным глазом.



  • Объект, отснятый близ звезды, сходной с Солнцем, не вписывается в привычные теории формирования планет. Специалистам еще предстоит разобраться с особенностями рождения этого странного мира, а широкая публика просто любуется снимками. Еще бы — не каждый день можно увидеть планету другой звезды, пусть и открыты их сотни.
    Звезда 1RXS J160929.1-210524 расположена примерно в 500 световых лет от нас. Она очень похожа на Солнце. Ее «вес» равен 85% массы нашей родной звезды. Правда, это светило значительно моложе нашего — 210524 возникла порядка пяти миллионов лет назад.
    Новая планета, по расчетам астрономов, обладает массой примерно в восемь масс Юпитера. И она не была бы такой уж уникальной, если б не два обстоятельства. Первое — она «вживую» запечатлена на снимках. А о втором скажем позже.
    Впервые астрономы непосредственно увидели объект планетарной массы на орбите вокруг звезды, такой как Солнце, и если подтвердится, что этот объект действительно гравитационно привязан к звезде, это будет крупным шагом вперед.
    Интригу, впрочем, принесло не яркое достижение наблюдательной астрономии как таковое, а выявленные параметры системы.



  • Теория эволюции звезд основана на диаграмме «спектр-светимость». Спектр звезды связан с температурой ее поверхностных слоев, светимость — это количество световой энергии, излучаемой звездой в единицу времени. По оси абсцисс откладывается последовательность спектральных классов, по оси ординат — светимость. Звезды Галактики изображаются на диаграмме точками. Точки могли бы расположиться как попало, могли бы сгуститься к одной линии. Но они сгущаются к нескольким линиям и областям, из которых выделяются пять. Им соответствуют группы звезд: звезды главной последовательности, субкарлики, красные гиганты, сверхгиганты, белые карлики. Сопоставляя диаграммы «спектр-светимость», составленные для различных звездных скоплений, можно с уверенностью утверждать, что звезды главной последовательности на определенном этапе эволюции превращаются в красные гиганты. Из диаграмм также видно, как это происходит: температура звезды начинает уменьшаться, размеры и светимость, наоборот, увеличиваются. Через некоторое время температура опять начинает расти. Скорость эволюции определяется начальной массой звезды.

    • Страницы
    • 1
    • 2
    • 3


  • Немного найдется произведений, передающих красоту космических объектов, называемых планетарными туманностями. Освещенные изнутри родительской звездой, расцвеченные флуоресцирующими атомами и ионами на фоне космической черноты, газовые структуры кажутся живыми. Ученые дали им прозвища — Муравей, Морская Звезда, Кошачий Глаз...
    Термин «планетарные туманности» — представляющие собой размытые, похожие на облака объекты, видимые только в телескоп — придумал два столетия назад английский астроном Вильям Гершель (William Herschel), исследователь туманностей. Многие из них имеют округлую форму, которая напомнила ученому зеленоватый диск планеты Уран, им же и открытой. К тому же он полагал, что округлые туманности могут быть планетными системами, формирующимися вокруг молодых звезд. Термин прижился, несмотря на то, что действительность оказалась иной: туманности такого типа состоят из газа, сброшенного умирающими звездами. Примерно через 5 млрд. лет Солнце закончит свой космический век изящным выбросом планетарной туманности, что не вполне соответствует теории эволюции звезд — основе, на которой базируется наше понимание космоса. Если звезды рождаются, живут и умирают круглыми, то как же они создают вокруг себя структуры, которые мы видим на фотографиях «Хаббла», подобные Муравью, Морской Звезде или Кошачьему Глазу?

    • Страницы
    • 1
    • 2


  • Эксперты ООН в ежегодных докладах публикуют данные, говорящие, что Землю в перспективе ждет катастрофическое глобальное потепление, обусловленное возрастающими выбросами углекислого газа в атмосферу. Однако наблюдение за Солнцем позволяет утверждать, что в повышении температуры углекислый газ «не виноват» и в ближайшие десятилетия нас ждет не катастрофическое потепление, а глобальное, и очень длительное, похолодание.

    • Страницы
    • 1
    • 2
    • 3
    • 4
    • 5


  • ...Пока ваш звездолет выбирается из гравитационной ловушки Гаргантюа, вы строите планы возвращения домой. К тому моменту, когда вы достигнете Млечного Пути, Земля станет на 2,4 млрд. лет старше, чем во время вашего старта. Изменения в человеческом обществе будут настолько велики, что вы не испытываете особого желания возвращаться на Землю. Вместо этого вы и команда звездолета решаете освоить пространство вокруг какой-нибудь подходящей вращающейся черной дыры. Ведь именно энергия вращения дыры в квазаре 8C 2975 позволяет квазару «проявить себя» во Вселенной, поэтому энергия вращения дыры меньших размеров может стать источником энергии для человеческой цивилизации.

    • Страницы
    • 1
    • 2
    • 3


  • В кинокомедии «Карнавальная ночь» один из персонажей — лектор — сообщает: «Есть ли жизнь на Марсе, нет ли жизни на Марсе, науке не известно». С тех пор прошло почти полвека, но это утверждение справедливо и сегодня. Однако не менее справедливо и другое: «Где есть вода — там есть и жизнь». Сегодня с большой долей уверенности можно сказать: вода на Марсе есть. Дело за малым — отыскать там жизнь.


  • Вращаясь вокруг Солнца, инфракрасная обсерватория НАСА ищет следы молодых звезд и галактик, а также межзвездное пространство, в котором они образовались.
    Космический телескоп имеет очевидные преимущества в изучении инфракрасного теплового излучения, которое испускают объекты, слишком холодные, чтобы сиять в спектре видимого света. Атмосфера Земли - постоянная помеха для инфракрасных приборов, поскольку она не только впитывает слабые инфракрасные лучи из космоса, но и сама выделяет их огромное количество.
    В 1979 году НАСА представило инфракрасный космический телескоп SIRTF. Он не стал первым инфракрасным прибором на орбите, но долгое время оставался самым большим.



  • Космологи в замешательстве. Обычно предметы, брошенные вверх, замедляются. Планеты притягивают объекты, звезды притягивают планеты. Это нормально. Но почему тогда Вселенная расширяется? Отдельные галактики, разбросанные после Большого взрыва в разные стороны, должны притягиваться друг ко другу — и расширение должно замедляться. Но того не происходит: они разлетаются друг от друга с ускорением. Принято считать, что виновата во всем темная энергия, хотя она темная именно оттого, что о ней никто ничего не знает. Но уже ясно точно, что на предельно больших расстояниях гравитация превратилась в отталкивающую силу, а не в притягивающую.

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • Юпитер называют планетой загадок. В статье высказывается гипотеза о причинах феномена «горячих теней» — наиболее таинственного и малоисследованного процесса, наблюдаемого в атмосфере гигантской планеты.

    • Страницы
    • 1
    • 2
    • 3