Загадки космических струн

Пт, 06/05/2009 - 12:39

Кольцевые струны — интереснейший объект. Они нестабильны и распадаются за некоторое характерное время, которое зависит от их размеров и конфигурации. При этом кольцо теряет энергию, которая берется из вещества струны и уносится потоком частиц. Кольцо уменьшается, стягивается, и, когда его диаметр доходит до размера элементарной частицы, струна распадается взрывным образом за 10-23 секунды с выделением энергии, эквивалентной взрыву 10 Гигатонн (1010 т) тротила.
Физика кольцевых струн очень хорошо вписалась в одну любопытную теорию — так называемую теорию зеркального мира. Эта теория утверждает, что у каждого сорта элементарных частиц существует партнер. Так, обычному электрону соответствует зеркальный электрон (не позитрон!), который тоже имеет отрицательный заряд, обычному протону соответствует положительный зеркальный протон, обычному фотону — зеркальный фотон и так далее. Эти два сорта вещества никак не связаны: в нашем мире не видны зеркальные фотоны, мы не можем регистрировать зеркальные глюоны, бозоны и прочие переносчики взаимодействий. Но гравитация остается единой для обоих миров: зеркальная масса искривляет пространство так же, как и масса обычная. Другими словами, могут существовать структуры типа двойных звезд, в которых один компонент — обычная звезда нашего мира, а другой — звезда из мира зеркального, которая для нас невидима. Такие пары звезд действительно наблюдаются, и невидимый компонент обычно считают "черной дырой" или нейтронной звездой, которые не излучают света. Однако он может оказаться звездой из зеркального вещества. И если эта теория справедлива, то кольцевые струны служат проходом из одного мира в другой: пролет сквозь кольцо равноценен повороту частиц на 180°, их зеркальному отражению. Наблюдатель, пройдя через кольцо, поменяет свою зеркальность, попадет в другой мир и исчезнет из нашего. Тот мир не будет простым отражением нашей Вселенной, в нем будут совсем другие звезды, галактики и, возможно, совсем другая жизнь. Вернуться путешественник сможет, пролетев сквозь это же (или любое другое) кольцо обратно.

Отзвуки этих идей мы, как это ни удивительно, находим в многочисленных сказках и легендах. Их герои попадают в другие миры, спускаясь в колодец, проходя через зеркало или через таинственную дверь. Кэрроловская Алиса, пройдя сквозь зеркало, попадает в мир, населенный шахматными и карточными фигурами, а упав в колодец, встречает разумных зверюшек (или тех, кого она приняла за них). Интересно, что математик Доджсон заведомо не мог знать о теории зеркального мира — она была создана в 80-х годах российскими физиками.

Искать струны можно разными методами. Во-первых, по эффекту гравитационного линзирования, как это сделал Э. Тернер. Во-вторых, можно измерять температуру реликтового излучения перед струной и за нею — она будет различной. Эта разница невелика, но вполне доступна современной аппаратуре: она сравнима с уже измеренной анизотропией реликтового излучения.

Есть и третий способ обнаруживать струны — по их гравитационному излучению. Силы натяжения в струнах очень велики, они значительно больше сил давления в недрах нейтронных звезд — источниках гравитационных волн. Наблюдатели собираются регистрировать гравитационные волны на приборах типа детекторов LIGO (США), VIRGO (Европейский детектор) и AIGO (Австралия), которые недавно начали работать.

Одна из задач, поставленных перед этими приборами, — детектирование гравитационного излучения от космических струн.

И если все три метода одновременно покажут, что в некой точке Вселенной имеется что-то, укладывающееся в современную теорию, можно будет достаточно уверенно утверждать, что этот невероятный объект обнаружен. Пока же единственной реальной возможностью наблюдать проявления космических струн остается эффект гравитационного линзирования на них.
Сегодня многие обсерватории мира ведут поиски гравитационных линз: изучая их, можно приблизиться к разгадке главной тайны Вселенной — понять, как она устроена. Для астрономов линзы служат гигантскими измерительными линейками, с помощью которых предстоит определить геометрию космического пространства. Пока неизвестно, замкнут ли наш мир, как глобус или поверхность футбольного мяча, или открыт в бесконечность. Изучение линз, в том числе струнных, позволит достоверно узнать это.

Другие материалы рубрики


  • ...Новая теория позволила сформулировать идеи, допускавшие экспериментальную проверку. В результате этих работ была предсказана новая разновидность света, состоящая не из обычных фотонов, а из загадочных Z–частиц. В окрестностях Женевы в 1983 году в серии экспериментов, исследующих столкновения частиц высоких энергий на ускорителе, были обнаружены Z–частицы, то есть единая теория поля получила подтверждение. Теоретики к этому времени сформулировали амбициозную теорию, объединяющую с электромагнитным и слабыми взаимодействиями еще один тип ядерных сил — сильное взаимодействие. Кроме того, были получены первые результаты исследований в области гравитации, показывавшие, каким образом гравитационное взаимодействие можно было бы объединить с другими типами взаимодействий...

    • Страницы
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6


  • Объект, отснятый близ звезды, сходной с Солнцем, не вписывается в привычные теории формирования планет. Специалистам еще предстоит разобраться с особенностями рождения этого странного мира, а широкая публика просто любуется снимками. Еще бы — не каждый день можно увидеть планету другой звезды, пусть и открыты их сотни.
    Звезда 1RXS J160929.1-210524 расположена примерно в 500 световых лет от нас. Она очень похожа на Солнце. Ее «вес» равен 85% массы нашей родной звезды. Правда, это светило значительно моложе нашего — 210524 возникла порядка пяти миллионов лет назад.
    Новая планета, по расчетам астрономов, обладает массой примерно в восемь масс Юпитера. И она не была бы такой уж уникальной, если б не два обстоятельства. Первое — она «вживую» запечатлена на снимках. А о втором скажем позже.
    Впервые астрономы непосредственно увидели объект планетарной массы на орбите вокруг звезды, такой как Солнце, и если подтвердится, что этот объект действительно гравитационно привязан к звезде, это будет крупным шагом вперед.
    Интригу, впрочем, принесло не яркое достижение наблюдательной астрономии как таковое, а выявленные параметры системы.



  • В нашей Галактике за пределами Солнечной системы обнаружено несколько сотен планет. Исследовать их проще и дешевле при помощи автоматических зондов сверхмалого размера. Запускать эти аппараты можно с Земли из электромагнитной пушки, а ускорять и корректировать орбиты будут гравитационные поля встречных звезд.
    Полеты к звездам — любимая тема фантастов и авторов компьютерных игр. Лихо носятся их звездолеты на просторах Галактики! Вот только неясно — как и зачем? Но эти вопросы не очень волнуют любознательных читателей: «как» — это придумают инженеры, а уж «зачем» — вообще неприлично спрашивать. Вы только представьте: новые неизведанные миры, братья по разуму... Разве это неинтересно?!
    Но не все фантазии удается воплотить в жизнь. Романтическая эпоха поиска внеземных цивилизаций, рожденная в начале 1960-х успехами космонавтики и радиоастрономии, к концу столетия почти сошла на нет.



  • Существует небольшой шанс, что через 3,34 миллиарда лет Марс столкнется с Землей. Также есть вероятность столкновения Земли и Венеры или Меркурия и Венеры. Меркурий вообще может упасть на Солнце или улететь в межзвездное пространство. Таковы причуды нашей системы, новые тайны которой раскрыли ученые.
    Подробнейшее численное моделирование эволюции орбит в Солнечной системе выполнили профессор Жак Ласкар (Jacques Laskar) и Микаэль Гастино (Mickael Gastineau) из Парижской обсерватории (Observatoire de Paris).
    Долгое время астрономы полагали, что орбиты планет в Солнечной системе стабильны и неизменны. Потом стали появляться сведения, что на заре зарождения системы орбиты ряда планет сильно отличались от нынешних и претерпевали большие изменения, прежде чем все «устоялось».



  • ...Несмотря на то, что идея коллапса кажется простой (при сжатии ядра выделяется энергия гравитационной связи, за счет которой выбрасываются внешние слои вещества), трудно понять процесс в деталях. В конце жизни у звезды с массой более 10 масс Солнца образуется слоеная структура, с глубиной появляются слои все более тяжелых элементов.
    Ядро состоит в основном из железа, а равновесие звезды поддерживается квантовым отталкиванием электронов.
    Но в конце концов масса звезды подавляет электроны, которые вжимаются в атомные ядра, где начинают реагировать с протонами и образовывать нейтроны и электронные нейтрино. В свою очередь, нейтроны и оставшиеся протоны прижимаются друг к другу все сильнее, пока их собственная сила отталкивания не начнет действовать и не остановит коллапс.

    • Страницы
    • 1
    • 2
    • 3
    • 4


  • Варварские наклонности некоторых звезд иногда возмущают. Пока одни отнимают вещество у ближайших тел, другие поступают еще более нагло и жестоко. Они скидывают со звезд газопылевые диски, которые могли бы дать начало новой планетной системе, а то и новым формам жизни. Но не со всех, а лишь с тех, кто решается переступить опасную черту.



  • О спонтанном возникновении вещества из пустого пространства говорят как о рождении “из ничего”, которое близко по духу рождению ex nihilo в христианской доктрине. Для физики пустое пространство совсем не “ничего”, а весьма существенная часть Вселенной, а мысль о рождении самого пространства может показаться вообще странной. Однако в каком-то смысле это все время происходит вокруг нас. Расширение Вселенной есть не что иное, как непрерывное “разбухание” пространства. С каждым днем доступная современным телескопам область Вселенной возрастает на 1018 кубических световых лет. Здесь полезна аналогия с резиной. Если упругий резиновый жгут вытянуть, его “становится больше”. Пространство напоминает суперэластик тем, что оно, насколько известно физикам, может неограниченно долго растягиваться не разрываясь. Растяжение и искривление пространства напоминает деформацию упругого тела тем, что “движение” пространства происходит по законам механики точно так же, как и движение обычного вещества. В данном случае это законы гравитации. Квантовая теория в равной мере применима как к веществу, так и к пространству и к времени.
    Действительно, благодаря собственной физической природе Вселенная возбуждает в себе всю энергию, необходимую для “создания” материи — это есть космический бутстрэп (bootstrap — в переводе “зашнуровка”, в переносном смысле — отсутствие иерархии в системе элементарных частиц).



  • За последнее время вблизи Земли пролетели несколько сравнительно крупных небесных тел. Сильную тревогу вызвало в 1936 г. прохождение астероида Адонис на расстоянии около 2 млн. км от Земли. А настоящую панику вызвал в 1937 г. астероид Гермес, имеющий диаметр ≈1,5 км, промчавшийся лишь на расстоянии 800 тыс. км от Земли (удвоенное расстояние до Луны). Позже (в 1992 г.) большой ажиотаж был связан с приближением к Земле малой планеты Тоутатис. Астероид диаметром около полукилометра пролетел мимо Земли 19 мая 1996 г. на расстоянии всего 450 тыс. км.

    • Страницы
    • 1
    • 2
    • 3


  • Прошло без малого сто лет с того момента, как были открыты космические лучи-потоки заряженных частиц, приходящих из глубин Вселенной. С тех пор сделано много открытий, связанных с космическими излучениями, но и загадок остается еще немало. Одна из них, возможно, наиболее интригующая: откуда берутся частицы с энергией более
    1020 эВ, то есть почти миллиард триллионов электрон-вольт, в миллион раз большей, чем будет получена в мощнейшем ускорителе — Большом адронном коллайдере (LHC)? Какие силы и поля разгоняют частицы до таких чудовищных
    энергий?

    • Страницы
    • 1
    • 2


  • Итак, знакомимся с действующими лицами драмы. Коричневый карлик 2M1207 спектрального класса M8 (его можно увидеть хорошо вооруженным глазом в созвездии Центавр) и его небольшой компаньон — планета 2M1207b. Последняя уже несколько лет как мучает ученых своими загадками. И вот теперь новейшее исследование позволило предположить: странные особенности данного объекта объясняются тем, что он рожден в результате совсем недавнего столкновения двух планет.